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FOREWORD

This report incorporates the effects ¢f shear wave from the elastic ocean
floor to the normal mode transmission loss model. The possible range
dependence of the acoustir prenmerties of the ccean is modclicd with a mcdified
version of the adiabatic approximation for slow variations. This newly
developed model proves itself very useful for performance estimation of
acoustic mines and sonar systems that operate at low frequencies. This work
was funded by the Independent Research Board of the Naval Surface Warfare
Center.
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CHAPTER 1

INTRODUCTION

An electromagnetic wave in vacuum travels a distance of nearly 300,000
kilometers in just one second. At the same time sound has only traveled about
340 meters. However, the electromagnetic wave attenuates very rapidly in
water’ Also, the attenuation coefficient of both waves varies significantly
with frequency, but low-frequency sound is the best form of underwater
radiation known to man?

An acoustic wave incident from the water to the solid sediments of the
bottom create a compressional {longitudinal) wave and a shear (transverse)
wave as shown by the use of the plane wave approximation of sound?~6 This, so
called, birefraction phenomena is also observed with electromagnetic waves in
calcite and it is described by a medium with two indices of refracticn. The
same phenomenon applies to seismo-acoustics.

With the use of explosive sound sources with a broad frequency band,
Pekeris7 found that the effects of shear waves on the propagation of sound in
the water increases with decreasing depth of the water and with decreasing
frequency of the propagated sound. Since the attenuation coefficient of sound
is directly proportional to its frequency? this and the low-frequency
absorption caused by the shear waves makes the ocean wave guide a band-pass
filter of the sound emitted by the source?

If the acoustic properties of this ocean wave guide are well known, then
it is possible to calculate the optimum frequency of sound propagation?'1° It
has been observed that sound with frequency below the optimum frequency highly
depends on the acoustic properties of the bottom sediments because of the
relatively small absorptive effects of low frequency sound, while the
transmission of sound with frequency greater than the optimum frequency
depends mostly on the acoustic properties of the water column’’

Since the optimum frequency of most ocean environments is smaller than
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one kilohertz, an underwater acoustic model for the propagation of sound in
this frequency band is needed. This model must contain the effects of the
acoustic properties of the water column and the seismo-acoustic properties of
the bottom sediments’? »

The ray theory is highly satisfactory to predict and explain some
electromagnetic phenomena, and it is very useful in predicting the
transmission loss of high-frequency sound. However, this asymptotic
approximation cannot explain wave-type phenomena such as diffraction and
interference’’ Pedersen’® pointed out that approximating the ocean’s sound
speed profile by layers of constant sound speed gradients causes erroneous
transmission loss computations where acoustic interference occurs. However,
his transmission loss calculations are made using ray theory which is the
greater cause of errors.

The normal mode theory represents the exact solution to the perfect wave
guide and it is used mostly in low-frequency underwater sound predictions?5
This model could also be used to predict the behavior of the transmitted
high-frequency sound with the expense of more computation time and memory.
With some assumptions and .approximations, the normal mode theory can be
expanded to include the effects of layers with linear acoustic properties,
shear waves from elastic layers, and range dependence of the ocean wave guide.

Various underwater acoustic models have been developed which treat some
of these properties. Each model has its virtues and limitations. For high-
frequency sound propagation the ray theory can handle all the mentioned
properties but we are interested in the low frequency region.

The parabolic equation (PE) method was originated by Frederick Tappert16
in the late 70’s where he approximated the wave equation in order to obtain a
parabolic differential equation which has the mathematical property of a
closed form solution which can be sclved by calculating the transmission loss
while incrementing in range without iterations. This approximation involves
neglecting the incoming solution of the wave equation and the use of the
large-range asymptotic approximation of the Hankel functions. This method was
adopted by Jensen and Kuperman17 to study the propagation of sound in an
up-slope wedge-shaped wave guide with a fluid-type bottom. Their results
showed that as the depth of the water gets shallower, the trapped modes reach

their cutoff freguency and become part of the continuous spectrum. Later, Ding
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18,19
Lee ™’

used an implicit finite-difference model to solve the parabolic
equation. McDaniel?® made comparisons between normal mode and the parabolic
approximation concluding that the latter displays errors in the computation of
the phase and group velocities. The limitations of the parabolic approximation
are that it applies only to sound propagation at small angles with respect to
the horizontal, it does not handle the horizontally reflected waves, and it is
incapable of handling the shear waves created in the elastic bottom

21,22 23-27
layers.

Many acousticians have included shear waves in their PE
models, but their theory is based on approximations and lacks the rigorous
derivation of elastic effects.

The fast field method developed by Schmidt®® is made to include the
elasticity of the bottom layers, but it may only be used in range-independent
environments.

. 29,30
Porter and Reiss

have also included the shear waves by incorporating
the impedance condition as a boundary condition to the normal mode
computations. However, this is also a range-independent model which uses the
plane-wave approximation to calculate the acoustic impedances.

The coupled normal mode method was implicitly originated by Allan

. 31,32
Pierce

in the mid 60s as an adiabatic-mode theory, with eigenray
calculations to estimate the coupling coefficients, to simplify the solution
to the propagation in a range-dependent environment. In this adiabatic mode
theory, he assumes an isovelocity wave guide and a weak coupling between the
natural modes of the wedge-like wave guide. He found that compressional waves
refract into the basement until they get completely attenuated. McDanieln'35
used the coupled wave equations to calculate the energy transferred between
normal modes as a result from bottom scattering of the ocean, and has shown
that randomly rough sea bed layering can increase the transmission loss
depending upon the degree of penetration of the acoustic field into the
sediment. I-:vans36'38 modeled the axisymmetric range-dependent medium as N
range-independent segments with a pressure-release false bottom suitably deep
to convert the continuous spectrum into a discrete form. The eigenvalues and
eigenfunctions of each range-independent segment was solved by taking into
account only the absorption of the basement layer to avoid the reflected
energy from the pressure-release false bottom. The group made up of by Graves,

Chwieroth, Miller, Nagl, Uberall, and Zarur-° *? have used a similar method
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for solving the set of coupled range equations, but they included water layers
with linear pressure wave number squared. This gives a betters approximation
of the sound speed profile and the solution for each layer is given by Airy
functions. Comparisons of the PE model and the coupled normal mode model have

44,45 Uhich gives the

been made for some up-slope range-dependent wave guides
best agreement if the environment slowly varies with range. However, it has
not been possible to define how slow the range dependent wave guide must be.

Even though the elastic effects were not incorporated in the coupled
normal mode method, there is no reason why this method cannot be applied to
the elastic wave equation. The objective of this report is to expand the
normal mode theory in order to predict the transmission loss of low-frequency
underwater sound with the effects of a depth-dependent sound speed in the
water column and the elastic effects of the solid sediments of the bottom.
Since some range dependence of the acoustic properties and the boundaries
between the layers has been experimentally observed, this property will be
included using an adiabatic approach assuming slowly range-dependent acoustic
properties. Another feature of the model to be presented here is that the
unrealistic false boundary used by Evans and Miller to convert the continuous
spectrum into a discrete form has been removed because the absorptive effects
of the elastic layers causes the radiating spectrum to be discrete.

The derivation of the wave equation and theory of normal modes in a
liquid wave guide is developed in the second chapter. Since the attenuation
coefficient of low-frequency sound in water is negligible compared to the loss
in the bottom elastic sediments, this property will not be included. However,
each layer of the horizontally stratified water column will have a constant
density and sound speed gradient.

In the next chapter, the general elastic wave equation will be derived
and solved by dividing the ocean floor into layers of constant acoustic
properties and separating the solution into a divergent (pressure) and a
rotational (shear) term. Each solid sediment will be described by a layer
thickness, a density, a compressional sound speed, a compressional attenuation
coefficient, a shear sound speed, and a shear attenuation coefficient.

The liquid-solid boundary conditions are derived in the next chapter in
order to match the solutions for each adjacent layer. The ocean wave guide has

a set of trapped modes which are evanescent in the bottom and a set of
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radiating modes which aire the major contributor to the sound propagation into
the bottom of the ocean and they become damped by absorption.

A complex characteristic equation is derived where the complex
eigenvalues can be found by searching for the complex zeros. The most
challenging part of this normal mode method is to find the best method of
determining these complex roots of the characteristic equation, since "There
are no good, general methods for solving systems of more than one nonlinear
equation"'.‘6 The Newton-Raphson Method for Nonlinear Systems of Equatic:ns‘6 and
the Muller Method with Deflation used in the subroutine "DZANLY" from the IMSL
Library47 were used to converge into the complex zeros, but severe civergence
has been experienced for some of the roots. Therefore, the Levenberg-Marguardt
minimization algorithm for the magnitude of the complex determinant has been
adopted for the uniform convergence to the nearest minima®®

The adiabatic approximation for slowly range-dependent ocean wave guides
is finally used to obtain the range-dependent scund propagation model with the
effects of the elastic and absorptive properties of the ocean floor. With such
a model, it will be possible to better understand the various propagation
phenomena related to low-frequency sound and to predict the transmission loss

of sound in realistic ocean conditions.
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CHAPTER 2

DERIVATIGN OF THE WAVE EQUATION FOR FLUID LAYERS

The wave equation is a mathematical description of the reaction of the
media due to a disturbance from an external force caused by a source or
sources. The media can be in the state of gas, liquid, or a solid, and the
source may be electromagnetic or mechanical. In this chapter, the mechanical
(acoustic) propagation of the disturbance in a fluid medium is treated. The
fluid medium is the ocean environment modeled as a horizontally stratified
acoustic wave guide where the surface is treated as a pressure-release, or
soft, or resilient, boundary. The bottom is modeled as elastic layers in the
next chapter.

The disturbance created by the acoustic source may be expressed as a
change in the total pressure, relative to the undisturbed pressure, as a
function of the density fluctuation created by this external force. If the
density fluctuation is much smaller than the undisturbed density of the
environment, then the total disturbed pressure may be expanded in the

following Taylor series:

_ apP _ 1 _ 2
P(p) = Po+ [—a-p—] (p po) * 3 [ ] (p po) + ... (1)
P e~ ’p

o] o]

where the partial derivatives are constants determined for the adiabatic
compression and expansion of the fluid about its equilibrium density po, the
equilibrium pressure is Po, and the instantaneous total density is p.

If the magnitude of the condensation is much smaller than unity, i.e.,

s = (p - po)/po = p~/po (2)
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then the first two terms in the Taylor expansion are of greatest contribution

and an acoustic pressure caused by the disturbance may be defined as
p=Plp) - P = {.__-] o (3)
p

where by thermodynamic argumentsa9 it is found that, in an adiabatic media,

the sound speed is given by

c? = [—%E—} (4)
p
Po
and the adiabatic bulk modulus is given by
B=p c? (5)

0

therefore, the acoustic pressure is simplified to

p = c? p (6)

which is called the state equation.

An equation for the motion of the particles in the fluid is also
necessary for the proper environmental description. Consider an infinitesimal
cubic volume in the medium where the disturbance is taking place as shown in
Figure 1(a) for the one-dimensional derivation in cartesian coordinates.

Equating forces in a continuous medium gives

d d
+ A [P(x) - P(x+dx)] = Jr(p A dx a%’ (7)

external
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where the external force is the disturbance created by the sound source and

can be written in terms of a "force density"” with the expression

= X A dx (8)
e

external

and using the definition of a derivative

Q - P(X+dX)-P(X)| (9)

ax dx
Equation (7) becomes
x - T -v Twp e« Tvp) (10)
which in three dimensions is given by
X - 9P =V (F-p) + S_(oV) (11)
e 8t

where the density is a function of space and time, and the equation is in a
non-linear form. The total pressure is P and the total instantaneous particle
velocity is V. Dividing the instantaneous density, pressure, and particle
velocity into an undisturbed part and an acoustic part, Equation (11)

simplifies to the linear form

-

ov
Po3t = Xe (12)

Up +

where the acoustic pressure is p and the particle velocity is v.
Since the fluid of interest is continuous throughout the infinitesimal
volume, Figure 1(b) will be helpful in deriving a continuity equation under
the argument that the mass moving into the volume, p(x) A Vx(x) dt, must be

the same as the mass coming out, p(x+dx) A Vx(x+dx) dt. There may be a change
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in mass inside the volume due to the compressibility of the fluid, g% A dx dt,

and there may exist a source of mass inside the volume represented by Q A dx

Taking the definition of the derivative in Equation (9) gives

dt.
-9 (o¥) A dx dt = %2 A dx dt + Q A dx dt (13)
dx ot
which is rewritten in three dimensions as
V- +2Lsqg=o0 (14)
at
or in a linearized form as
> - ap -
pOV V4o s 0 (15)

where Q = 0 when the source is external.
Substituting Equation (6) into Equation (15) for the acoustic density,

taking its partial derivative in time, and dropping the subscript 0 of the

undisturbed density of the medium, gives

~e
(V-v) + 2 "_2 p =0 (16)
ot

QJIQ)
st

o)

and taking the divergence of Equation (12) yields

(17)

[s}]

pa-(I/p Gp) +p EY(ﬁ-G) =p 6-(i/p)

which subtracted from Equation (16) provides the inhomogeneous wave equation

pV-(1/p Up) + K%p = p V- (1/p YU) (18)
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where the external force has been written in terms of an external potential
energy, time harmonic behavior has been assumed where k=w/c, and the
undisturbed density of the fluid is taken as space dependent. This equation

can also be written as

vPp + k%p - p H(¥p)- (Up) = YU - p 1 (¥p)- (FU) (19)

which is simplified under the change of variables

and
U=vpv (21)
to obtain
VA + (K2+K5)T = VPv + Ko (22)
where
2_ 1 2 _ 371242
K= 55 ¥ Z(pvp). (23)

If the density is taken as a linear function of depin, then Equation (23)
simplifies. However, the inhomogeneous equation to solve also has a depth
dependent wave number to worry about due to the depth dependence of the sound
speed. The changes in density with depth only occurs in the surface of the
Arctic Ocean where water has been solidified and at regions where the water
from rivers merge into the salty ocean waters. It is concluded that, for
simplicity, the ocean environment can be divided into horizontal layers with
constant density. It is understood that the bottom's solid sediments may have
layers of large density gradients?o In this case, Equation (22) must be
solved. However, it is also possible to divide this layer into smaller

constant-density layers. Then Equation (18) becomes

v’p + k°p = VU (24)
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which, in an unbounded medium, has a general homogeneous solution consisting
of an outgoing and an incoming wave, and an inhomogeneous solution caused by
the external force. Since a sound source in a fluid can only produce a scalar

potential (no shear waves), the curl of Equation (12) gives the property

Uxv = constant = vorticity (25)

the vorticity in the medium does not change. Therefore, if initially there
has been no rotational component of the particle velocity then the vorticity
will always be null and this particle velocity can be written in terms of a

velocity potential

v = Vg (26)
which substituted back into Equation (12) gives
=, 9%
P=-p 3 (27)
and assuming harmonic time dependence yields
p = -iwp ¢ (28)
or
v =10 (29)
wp

Substitution of Equation (28) into Equation (24) provides the inhomogeneous

Helmholtz equation

Vo + k% = Lp veU (30)

which must be solved for the velocity potential. If the medium is bounded,

11
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the solution must satisfy the appropriate boundary conditions.
The conservation of energy is obtained by the scalar product of Equation
(12) with the particle velocity and substituting the continuity equation,

Equation (15), providing the law of conservation of energy:

86 2 3
where
1 2 2
E=spv + p (32)
2 2
2pc
is the acoustic energy density, and
i=pv (33)

is the acoustic energy flux or acoustic intensity in SI units of Watts per
square meter. Integrating Equation (31) throughout a volume in the fluid

medium provides the acoustic power

(34)

dt

=
I
—
™
Q.
<
I
|
e
—
jo IBY
@

in terms of a closed surface integral around the volume where all the energy
is contained.

To obtain these important measurable quantities, it is necessary and
sufficient to solve Equation (30) for the velocity potential. To solve this
equation by separation of variables, it has been proven that the sound speed
must be a function of only one variable.s1 This variable is taken to be the
vertical direction since temperature and the total pressure of the ocean
highly depends on depth. Based on experimental measurements, numerical fits
have been made to determine the sound speed and its attenuation coefficient in
the sea.

A simplified version of Wilson's formula for the sound speed as a

function of temperature, salinity, and depth is given by

12
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c(z) = 1492.9 + 3(T-10) - 6x107>(T-10)% - 4x107%(T-18)% + 1.2(S-35) -

1072(T-18)(S-35) + z/61 (35)

where the temperature T is in celsius, the salinity S is in parts per
thousand, and the depth z is in meters. The formula is accurate to 0.1 m/s
for a temperature less than 20°C and for depths less than 8.0 kilometers? A
sound speed profile, with its salinity and temperature profiles, is displayed
in Figure 2 as a function of depth in the Arctic Ocean. Note the variability
of the data which is caused by currents. Sound speeds in the oceans may vary
anywhere between 1400 m/s and 1600 m/s.

The attenuation coefficient has been fitted by Thorp as a function of

frequency, temperature, and pressure. A simplified version of the formula is

a(f) = 0.003 + 0.1F2/(1+f%) + 40£2/(4100+£%) + 0.000275f° (36)

where f is the frequency in kilohertz, a is the attenuation coefficient in
decibels per kiloyard, and the relationship holds for frequencies greater than
ten hertz but lower than one megahertz. This attenuation coefficient is
included in the environmental properties as the imaginary part of the wave
number. However, it must be cocnverted to units of nepers per meter. The

conversion is given by

a(nepers/meter) = a(dB/kyd} / [20 log(e)] / 914.4. (37)

Note that the attenuation coefficient is directly proportional to the

frequency, therefore low frequency sound travels farther than its counterpart.

13
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CHAPTER 3

THE GENERAL ELASTIC WAVE EQUATION

Consider two infinitesimal volume elements, P and Q, at a distance A;
from each other in an elastic medium. An external disturbance moves these

elements to the position P° and Q', respectively.

Strain, a dimensionless quantity, is defined as the change in position of

a point, say Q, with respect to a reference neighboring point, say P, divided
by the distance between these points, i.e. /BR/. Therefore, expand each
component of the 2 displacement in a Taylor series relative to the 2

displacement as follows:

3 3 o€

= x
cx €x * 3z Ax + 5y Ay + 37 Az + ... (38)

and combine them to obtain the expansion,
=8+ (a2 -8+ ... (39)

where the higher order terms are nonlinear and may be neglected if we assume

the maximum amplitude of the displacement vectors, £ and {, to be much smaller

than the wavelength of the disturbance (Hooke's law). This assumption is
valid at low frequencies and at distances greater than a wavelength from the

external source.

€ 8€
Adding and subtracting the terms —5;3 Az and axy Ay in Equation (38)
gives,
C =€ +0Q fz-Q By +S BAx +S Ay +S Az + ... (40)
x x y z XX xy Xz
with

14
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7 x& (41)

and

e-i[ve-(92) ] a2)
where t stands for the transpose of the tensor matrix in the parenthesis and
where o identifies a tensor of second rank. Although there are no units for
strain, engineers sometimes use implied multiples, e.g. microinches/inch, a
number which is strain x 106, or percent strain, a number which is strain x
10%. Where strain is displacement per unit of length in the direction of
displacement, it is referred to as a normal strain. Where the strain is
displacement per unit of length in a direction perpendicular to the direction
of displacement, it is referred to as a shear strain. In a three-dimensional
strain field the strain can be resolved into an isotropic component (or
volumetric strain), representing change in volume (and density) of an element,
and a deviatoric component, representing change in the shape of an element.

In vector form we get,

2=8+8xaP+ 8. a7+ ... (43)

where { is expressed in terms of the rotational and divergent behavior
relative to £.

In an elastic medium, the linearized Euler equation becomes,

7.8+ P =7 (44)

Q)IQ)
<y

where B is the stress tensor, V= 83/6t is the particle velocity, p is the
undisturbed density of the medium, and ? is the external force that disturbs
the medium creating the acoustic field. Stress is force per unit area and may
be either normal stress produced by tensile, compressive forces acting
perpendicular to the faces of cubic elements, or shear stresses, produced by
tangential forces acting parallel to the surfaces of cubic elements. In a
three-dimensional stress field, the stress sy. .m can also be resolved into an
isotropic component (or bulk stress) and a deviatoric component. By

definition, this elastic medium has a rest state in which stresses and strains

15
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vanish. Linear elasticity means that stress is directly proportional to
strain. If the medium is also isotropic then the relationship between the
stress and strain tensors in terms of Lamé constants is given by the

constitutive relation

B=r0T+2u8 (45)

where & = ¥ - 2 is the divergent component of the displacement vector, T is

the unit matrix, and the Lamé constants are given by

A =p(c? -21b%) (46)

and

p=p b, (47)

where ¢ is the compressional sound speed of the medium and b is its shear
speed. Equations (45) through (47) are sufficient to characterize the linear,
isotropic, elastic medium. The absorptive nature of the medium is modeled by
making both sound speeds complex where the imaginary part of the sound speeds
is related to their respective attenuation coefficients. Since the speeds are
considered space dependent, the substitution of the stresses into Euler’s

equation, Equation (44), gives

=f+V- e +27. wd, (48)

Q;TQJ
| <l

and substitution of Equations (41) and (42) provides the elastic wave equation

2
p Q-g =fT+A+p)Vo+oTr+uv@+20 -8 (49)
at

which is a set of three coupled inhomogeneous differential equations where
each component of the solution 2 depends on the others.

To uncouple this generalized elastic wave equation, it is sufficient to
eliminate the last term in the right-hand-side. This is done by assuming a

quasi space-independent shear modulus, p. From Equation (47) this means layers

16
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of constant shear speed and density, but note that no restriction is imposed
on the compressional speed.

In the case of solid (elastic) layers there is no external force present,
T = 3, since the source is assumed to be in the water column. Furthermore,
layers of constant shear modulus are assumed. Under these conditions Equation
{49) simplifies to

pB = (A +p Vo+0Wh+puve (50)

Since the displacement vector has been expanded into its rotational and
divergent part in Equation (43), the same expansion may be applied to the time
derivative of the displacement vector now defined as the particle velocity,

i.e.,

V= g = To + 7 x X (51)

where the first term in the right-hand-side corresponds to the compressional
waves and the second term is the shear wave contribution to the acoustic
field. Substituting Equation (S1) into Equation (50), and taking into
consideration the assumption of isodensity layers with constant shear speed,

gives

7 [ p e’ - (A + 2u) V2¢ ] =¥ x [ M VR - p 2”]. (52)

The divergence of this vector equation is satisfied if

(92 + k%) ¢ = 0, (53a)

which is the compressional wave equation, and the rotational part is satisfied

with the shear wave equations

(v¢ + k%) R = o0, (53b)

17
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where k = w / ¢ is the compressional wave number, x = w / b is the shear wave
number, and harmonic time dependence is assumed.

For simplicity, the compressional and shear attenuation coefficients are
included as the imaginary part of both wave numbers instead of the sound

speeds. In this case, the complex compressional wave number is

kzw/c¢c+i a, (54a)

where a is the compressional attenuation coefficient and the complex shear

wave number is

K=w/b + i B, (54b)

where B is the constant shear attenuation coefficient.
For the case of axially symmetric propagation in cylindrical coordinates

we write

A ~

V=v (r,z2) r + v (r,z) z (55)
r Zz

which will be equated to Equation (51) to obtain the components of the
particle velocity in terms of the potentials. However, to obtain range
independent boundary conditions the vector potential A must be written as the

curl of another vector potential, i.e.,

E=9xy (56)

which gives

V=Tl + T @D - 9% (57)

The physical meaning of this new vector potential is obvious when
calculating the stress matrix for the boundary conditions. The component y
r

corresponds to the SH-waves in seismology?2 ¢_ vanishes in an axially

e
symmetric medium, and wz corresponds to the SV-waves. However, the stress

18
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tensor of the SH-wave has only off-diagonal elements, while the stress tensor
in the liquid layers has null off-diagonal elements. Therefore, a source in
the liquid layers is incapable of exciting SH-waves in the solid layers. In

consequence, we have wr = 0 and the particle velocity is given by,

5> _[a 3 8 . 83 18 3 .
v—[§¢+ang]r+[5¢ Fg[rng]]z (58)

The shear wave equations to be satisfied are now reduced to the scalar wave

equation,

(v2 + k%) v =o0. (59)

Substituting Equations (59) into Equation (58), equating this result with

Equation (55), and assuming axially symmetric cylindrical coordinates provides

5} sz
Vﬁa[“’*ﬁ] (602)
and
2
_ 8 8 2
v =L [ R ] v, (60b)

for the components of the particle velocity.

19
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CHAPTER 4

SOLUTION OF THE WAVE EQUATION

The solution of the inhomogeneous compressional Helmholtz equation for
the liquid layers can be written as the sum of the homogeneous solution and
the particular (transient) solution. The generalized homogeneous solution can
be used as the solution of the homogeneous compressional wave equation in the
solid layers, Equation (53a). The solution of the homogeneous shear wave
equation, Equation (59), however, is different since the shear spced and
compressional speed of a sediment are usually unequal.

For simplicity and without loss of generality, we may solve the
inhomogeneous wave equation in the water column for the case of a point source

of unit source strength which, in the cylindrical coordinate system, becomes

2
[l — {r ——] + E;E + k2(z)J p(r,z) = - z%; 8(r) &(z - Zo) (61)

where the source is at r =0, z = z_, and the wave number is taken to be depth
dependent only.
A lengthy but elegant way to solve the wave equation is by the use of the

Fourier-Bessel transformation,

(++]
o(r,z) = I u(k,z) Jo(kr) k dk, (62a)
0

and its inverse form,

o0
u(k,z) = J o(r,z) Jo(kr) r dr, (62b)
0

20
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where the zeroth order Bessel functions satisfy the closure relation,

0
S(r-r')=r I 3 er) J Ger’) K dk, (63)
0

and the Bessel equation,

k°r Ju(kr) + kr J! (kr) + k°r2 J (kr) = 0. (64)

Substitution of the above equations and the relation

or

QJ|QJ
-

[ r 8 ] Jytkr) =k 3 (k) + K2 3% (kr) = -kPr 3 (kr) (65)

into Equation (61) converts the partial differential equation to the ordinary

differential equation

2 8(z - z)
[ 4 ki) -k ] ulk,2) = - — 9% (66)
d22 2n

where k° is the continuous eigenvalue and u(k,z) is the continuous
eigenfunction of the inhomogeneous equation. In the case of a discrete wave

number spectrum the eigenequation becomes

8(z - z)
0

d2 2

[ — + k' (2) - k2 ] u (2) = - ——nF (67)
2 n n 2n

dz

where n =1, 2, 3, ..., N is the mode index, k° are the discrete eigenvalues
n
and un(z) are the discrete eigenfunctions. These eigenequations are similar to

the Schrédinger equation in quantum mechanics. A sound speed profile taken 1n

21
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the Arctic is shown in Figure 2. The sound speed as a function of depth is
contained in k°(z) = wz/cz(z) and the minimum sound speed is defined as Cotn
which represents a maximum wave number in the eigenequation kmax. Define the
"equivalent potential” as V(z) = kiux- k%(z) and the "equivalent eigenvalues"

as E = K - kz, then the eigenequation becomes
n max n

u’(z) + [E - V(z)] u(z) =~68(z-2)/2n (68)
n n n (o]

which is equivalent to the time-independent Shrédinger wave equation, where
the double prime stands for the second derivative with respect to the
argument, the minimum potential is zero, and there exists a maximum potential
which represents the threshold between the discrete and continuocus spectrum.
This maximum potential is given by the determination of the sound speed in the
limit as z — «. The "propagating modes" are defined by the mode cutoff limit
En< wz/c:in and they may be "trapped modes" which are represented by a
discrete eigenvalue, or they may be "radiating modes" which are represented by
the continuous spectrum. Note that the potential V(z) and the eigenvalues En
depend on the frequency of the source. Therefore, the number of discrete
eigenvalues vary with the frequency of the sound that is disturbing the
medium.

Since the ocean floor is not rigid nor soft, the energy spectrum will
contain trapped modes which are evanescent in the bottom layers with higher
sound speed and radiating modes which represent the energy that radiates into
the bottom sediments.

36-38

. 42-44
Evans and Miller

have solved the purely real wave equation
which gave a discrete eigenvalue spectrum representing the trapped modes and a
continuous spectrum representing the radiating modes. The absorptive effects
of the fluid-type bottom was later incorporated as the imaginary part of the
eigenvalues using the first order perturbation approximation assuming small
absorptive effects. The continuous spectrum was forced to be discrete by
adding a deep false {(pressure-release) boundary. Since this boundary caused
reflection of the incident sound, a very large attenuation coefficient must be
used in the basement layer, therefore making the first order perturbation

approximation an invalid method.
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The continuous eigenvalue spectrum is the direct consequence of solving
the unrealistic purely real wave equation. If the absorption is incorporated
in the wave equation as the imaginary part of the wave number, then the
radiating modes will be part of a discrete spectrum. In this case, the

Helmholtz equation in Equation (67) becomes

2
[d—+k2(z)-k2]u(z)=0 (69)
2 n n
dz

which is the homogeneous Helmholtz wave equation.
From the continuity of pressure in the liquid layers, which will be
discussed in the chapter on the boundary conditions, we shall set the function

vp(z) un(z) as the orthonormal eigenfunctions,

I p(z) un(z) um(z) dz = anm (70)

which also satisfies Sturm-Louville’s Theorem?1 The closure relation is given

by

N
8(z - zo) = p(zo) E:: un(z) un(zo), (71)
n=1

and the eigenfunction is solved by the method of separation of variables for

the individual modes which are later added in the form

N
u(k,z) = }Z: a (k) u (z2) (72)
n n

n=1
where an(k) is to be determined. The inhomogeneocus term is taken into account

if we substitute the homogeneous solution in the inhomogeneous equation. The

substitution gives
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N N

d2 2 2 p(zo)
[ — + k(2) -k ] }Z: a (k) u(z) = - E:: u (z) u(z) (73)
2 n n 2n n n o0
dz
n=1 n=1
and substituting the homogeneous equation provides
. 2 2 p(zo)

Z [an(k) (k™ - kn) T un(zo)] un(z) =0 (74)
n=1

and, to satisfy the equation, the terms inside the brackets are set to zero

leading to the relation

a (k) = ° _ (75)

which substituted into Equation (72) gives

p(zo) ¥ u (zo) u (z)
U(k,Z) = 1 Z—nTnZ— (76)
k™ -k
n=1 n

and this substituted into Equation (66) gives the scalar potential

2n 2

p(z,) N ® J (kr) k dk
o{r,z) = —— }[: u(z ) u (2) (77)
nOn0 k_kz
n

n=1

where the integral of this equation is better solved by contour integration

and it can be defined as
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o H'Y (kr) + H'® (k1)
o] (o]

I (r) = % - . K dk. (78)
n o} k™ -k

A property of the eigenvalues of the problem is that these usually have a
smaller imaginary component compared to the real part. Also, both parts of the
eigenvalues are positive because outgoing waves from the source are used to
satisfy causality. To solve this complex integral, consider the contour

integration in the first quadrant of the complex k-plane as displayed in

Figure 3, where

{
H ' (kr)
> 5 k dk, it =1,2,3
k™ - k
C n
11
In (r) = < (79)
H ) (kr)
> > k dk, i = 4,5,6
k™ - k
(o) n
21
\
and, by this definition, the integral to be solved is,
=1
In!(r) =3 [ Inl(r) + In4(r) ]. (80)
, 49
By Jordan’s lemma we have
Inz(r) = Ins(r) =0 (81)
also the integrals in Equation (79) show that
I (ry+1 (r) =0 (82)
n3 né
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which means that we may write

6
Z I (r) (83)

where only Inl(r) and In4(r) contribute to the sum.
Given that the singularities, k = kn, are located in the upper contour we
get that

6 HéZ)(kr)
Zli(r)= ———5 kdk =0 (84)
= k™ -k
C n
2
and
3 Hél)(kr) 1)
Zl(r)= % kdk=nrniHY k) (85)
nil 2 2 o} n
i=1 k™ - k

by calculus of residues. Substitution of Equations (84) and (85) in Equation

(83) and this one into Equation (77) gives

N
_ i (1)
p(r,z) = i p(zo) E:: un(zo) un(z) Ho (knr) (86)
n=1

where the eigenfunctions un(z). and eigenvalues kn, satisfy Equation (69).

Note that the solution has been written using a separation of variables?3
To solve the characteristic equation for the compressional waves,

Equation (69), the sound speed profile is divided into layers where the

squared of the index of refraction is a linear function of depth, i.e.

’
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nz(z) =az+b
3 J

where kj(z) =

J

w nj(z), Figure 4 gives the geometry to be used for this

(87)

mathematical model, and the subscript j is the layer number. To determine aJ

and bj,
bottom to be ¢
J+1

let the sound speed at the top of the layer to be cJ

Substituting into our linear equation gives

—15 =a z +b,
c J ) J
J
and
_!_2 =ajz¢1+b’
c J J
J+1

which solved for aj and bj results in

and

b =

1
. c2 D ¢
J+1 J

- 2z

where D = 2z
J j+1

is the thickness of the layer.

given by n° = 1/c¢”, and if ¢ = (n® - n® )/D , then we have
J J ) J Jje1 J
2 _ .2
k“(z) = | n° + 0 (z - z)] =k +S(z-2)
J J J 3
where
S= (k°-k° /D
J ) i+ J
27

and that of the

(88a)

(88b)

(89a)

(89b)

The index of refraction is

(90a)

(90b)
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and which substituted into the eigenequation gives

d_ u (z) + [ k2 +S(z-2) - kz ] u (z) =0 . (91)
n} J J J n nj

2
dz2
Define

c(z)s-s'2/3[k2+stz—z)-k2] (92)
nj 3 J J b] n

and square its derivative to obtain

which substituted into the new eigenequation gives

d2
[ — - an ] unj(cnj) = 0. (94)
d(nj

The solutions of this differential equation are the Bessel functions of order

1/3, or more commonly known as the Airy functions, i.e.,

u (€ ) =a Ai(CnJ) +b  Bi(¢ ). (95)

nj °nj nj nj nj

The behavior of the real part of these functions and their derivative is shown
in Figure 5 and some of their properties are given in Reference S4. Now that
the general solutions are found, we must match the solutions at each boundary
with the appropriate boundary conditions in order to find the unknown
coefficients and eigenvalues for each mode.

The attenuation coefficient in the water at low frequencies is negligibly
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small. Therefore, only the shear and compressional attenuation coefficients in
the elastic bottom layers are taken into consideration, and only the complex
eigenvalue will make the argument of the Airy functions complex.

Using, once more, the method of separation of variables for the solution

of the homogeneous shear Helmholtz equation we obtain the general form

N
y(r,z) = E:: A v (z) H (r) (96)
n n n

n=1

which substituted back in the shear wave equation leads to

2
d frdly =29y +«?=k® = constant (97)
dr n Vo422 ® n

which gives the ordinary differential equations,

2

d viz)+ ¥ -k v (2) =0, (98)
2 n n n
dz
and
2 d2 d 2.2
[r — +r — + Kk'r ] H (r) = 0. (99)
2 dr n n
dz
The solution of the first equation in the jth layer is
vnj(z) = cnJ exp(wnjz) + dnj exp(-?njz) (100)
2 _ .2 2 . . 2
where 7n5 = kn - Kj and the solution can be oscillatory (znj < 0) or

exponential (zij > 0). By causality, only the radially outgoing solution of

the second equation must be used. The solution to this radial diffeiential
equation is the zeroth order Hankel function of the first kind, H;l)(knr).
Finally, since anj and bnJ are unknowns to be evaluated by the use of the

boundary conditions, we are free to choose A = /4 p(zo) un(zo) which, in the
n
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.th s
J layer, gives

N
_ i (1
wj(r,z) =37 pJ(zo) E:: unj(zo) vnj(z) Ho (knr). (101)

n=1

This expression simplifies the boundary conditions for the evaluation of the
unknown eigenvalues and amplitude of the eigenfunctions.

Note that the n'h compressional eigenfunction and the n'® shear
eigenfunction are represented by the same eigenvalue kn. The common eigenvalue
is necessary to satisfy the general elastic wave equation and to obtain
range-independent boundary conditions.

Now that the general solutions are found, these solutions will be matched
at each boundary with the appropriate boundary conditions in order to find the

unknown coefficients and eigenvalues for each mode.
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CHAPTER S

THE BOUNDARY CONDITIONS

The ocean is modeled as a horizontally stratified wave guide with layers
of elastic properties simulating the ocean floor and liquid layers simulating
the water column. To match the solutions of adjacent layers, boundary
conditions are derived. In this chapter, the boundary conditions for all

possible interface are developed.
BOUNDARY BETWEEN LIQUID LAYERS

There are several ways of calculating the boundary conditions. The
boundary conditions for the interface between two fluid layers can be obtained

when an infinitesimal cylindrical volume is modeled across this boundary.

There are two boundary conditions to be satisfied at this interface.

Continuity of the Normal Particle Velocity

The volume integration of Equation (15) in this infinitesimal cylinder

provides the expression

p § v'n dA = - gf J p dA Ax (102)

where making 8x — 0, the right hand side of the equation vanishes and the

surface integral yields the boundary condition

=v - n (103)
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which means that the normal component of the particle velocity is continuous
at the interface.

This boundary condition is expressed as v - ; = continuous, and in the
case of horizontally stratified layers we may write 5 = ; to obtain the

boundary condition,

- 69 _ :
V=5 continuous (104)
or using Equation (86) gives
dun
= continuous. (105)

Continuity of the Pressure

Assuming that there is no source in the infinitesimal volume of this

cylinder, the volume integration of Equation (12) gives

- § pndA=op 9{ J v dA Ax (106)

and letting Ax — O yields the pressure boundary condition

(107)

1|s 2|s

which means that the acoustic pressure at the interface is continuous.
Substituting Equation (86) into Equation (28) and this one into Equation (107)

gives

pu = continuous. (108)
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BOUNDARY BETWEEN LIQUID AND VACUUM

As a very good approximation, we may consider this boundarv as pressure-
release for acoustic waves in the liquid layer. Therefore, the only boundary
condition is that the pressure vanishes at this boundary. Substituting
Equation (28) for the pressure, and Equation (86) for the scalar potential

gives

u| =o. (109)

The same boundary conditions are obtained using the particle velocity and
the stress tensor of an elastic layer by making the shear speed vanish. The
particle velocity is given from Equations (55) and (60). From Equations (42)

the strain tensor in an axially symmetric environment is given by

3¢ o€ 8¢
r 0 1 _*
ar 2 [ or dz ]
S = 0 0 0] (110)
1 ffi + fff 0 BEZ
2 8z ar oz

and using Equation (45S) for the stress tensor in terms of the components of

the particle velocity gives
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ov v av ov av
o = oA Fegt] o Ay
e av \Y ov
w?P = 0 A[ EFE + F£ + 523 ] 0
avr avz avz v 6vr
“[ﬁ*é?] 0 ‘A*Z“’H”‘[r—*ar]
(111)

which is a Hermitian matrix as expected for being an observable quantity. Now
we can calculate the boundary condition for some other cases involving the

solid layers.

BOUNDARY BETWEEN LIQUID AND SOLID

In the case of liquid-solid boundaries we have three boundary conditions

to satisfy.

Continuity of the Normal Particle Velocity

Using the particle velocity vector in Equations (60) and (55) takes us to

the equation

3¢ o8¢ 2 2
=5 4|8 e v (112)
8z |z 08z |z 2 2 z|2
0 az b o
which by substituting Equations (89a), (91), and (94) gives
dunl du 2
- ns
dz z_  dz zo+ Kk, Vv z, (113)

where Z, stands for the depth of the boundary to be matched, and these
functions must be evaluated at this position. The subscript "1" stands for the

depth function in the liquid layer and "s" labels the depth function in the
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solid one.

Continuity of the Pzz Component of Stress

Extracting the Pzz component of the stress matrix in both media gives

<

ov av
pwel| = 1 (A +2u) — +2a | =+ T (114)
1 1 z, iw 8z r ar z,

where by the same equations as used before we obtain

dv
p.u =pu - 2p (k /k 12 [ uw o+ =2 (115)
s n s n s ns dz

1 nliz
o]

s|(z z -’
o] ¢}

The Prz Component of Stress Vanishes

From Equations (111), and the same equations used before, this boundary

condition becomes

+ 2k2-kH v =o0. (116)
20 n -3 n

BOUNDARY BETWEEN VACUUM AND SOLID

For a free elastic layer we have two boundary conditions to satisfy.

These are,
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The Pzz Component of Stress Vanishes

dv
u -2(k/k)2[u+——"] = 0. (117)
ns|z n s ns dz z
0 o}
The Prz Component of Stress Vanishes
du 2 2
2 —= | + (2k* -k°) v | =0. (118)
dz zo n s n z,

BOUNDARY BETWEEN SOLID LAYERS
In this case we have two boundary conditions from the particle velocity

and two from the stress. These are the most general of all boundary

conditions given above and are stated as follows:

Continuity of the Normal Particle Velocity

du A\

"+ k¥ v = continuous (119)
dz n n

Continuity of the Tangential Particle Velocity

u + — = continuous (120)
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Continuity of the Pzz Component of Stress

dv
2 n _
pu_ 2p(kn/k) [ u+ ] = continuous (121)
Continuity of the Prz Component of Stress
2 du 2 2
pb [2 dn + (2k" - k%) v ] = continuous (122)
y4 n n

where it is emphasized that the axially symmetric cylindrical coordinate
system has been used and the equations are implicitly evaluated at the depth

of the boundary interface.
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CHAPTER 6

THE PROPAGATION AND MATCHING ALGORITHM

The eigenvalues that characterize the stratified ocean are obtained by
satisfying all the boundary conditions simultaneously. The algorithm developed
here consist in multiplying all the calculated propagation and matching
matrices to obtain the value of the compressional and shear eigenfunctions at
some interface where the chosen characteristic equation is to be evaluated. A
combination of the up-layer and down-layer evaiuation of the eigenfunctions
and their derivatives will be used. At the jth interface between two solid
layers, the four boundary conditions in Equations (119) through (122) are

written in matrix form as

unj_i(zj) unj(zj)
B, IR I N (123)
v 2 v 2
nj-1 J nj J
v’ (z) v/ (z)
nj-1 j nj J
where
{ 3
0 1
0 Kk° 0
’B, = n , (124)
0 2 -4 T/ 0
H Hytyky
T 0 0 -
{ Pyt pJQJ )

and it ic designated that QJ
matching of the eigenfunctions the matrix IBJ_1 in Equation (123) is taken to

2 k: / K? and TJ =1 - QJ. For up-layer

the other side and multiplied by BJ to obtain the matching matrix




are the elements,

-1

where

R = / and S = /
; PJ Pj_1 5 M7

SERSES N

NSWC TR 89-170

(M. 0
11
0
- 22
J 0O M
32
| M, O

3

M =2 (1 -5)/k°
2 J j-1

0 M)
14
0]
23
0]
33
0 M
a4/

(125)

(126a)

(126b)

(126c¢)

(126d)

(126e)

(126f)

and the ratio of densities and shear moduli are defined as

At the liquid-liquid interface the boundary conditions are reduced to

at the jth interface.

two, and the up-layer matching matrix becomes

(127)

These matching matrices simply provide the eigenfunctions and their

derivatives at the bottom of the j-1 layer when the values at the top of the

h layer are known. Another matrix is needed to propagate the solution from

the bottom to the top of the jth layer.

When the values at the bottom of the jth layer has been determined, the

39
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top of this layer. To create this propagation matrix, Equations (95) and (100)

are rewritten in the matrix form

u (2)
nj
unj(z) -
an(Z)
v/ (z2)
n}
lfilan(Z)] 1§§[F“J(Z)] 0 0 anj
-SJ Al [an(z)] —Sj Bi [an(z)] 0- 0 bnJ
0 0 exp(¢7nJ) exp(-Lynj) 0
0 0 Lynjexp(Lynj) ~¢7njexp(—L7nJ) dnj

(128)

where the banded 4x4 matrix means that the shear and compressional
eigenfunctions are propagated independently from each other even though they
depend on each other in the matching process. Therefore, the propagation
matrix can be divided into a 2x2 compressional propagation matrix and a 2x2
shear propagation matrix. Inverting and evaluating the compressional

propagation matrix at the bottom of the jth layer gives

., -1/3_,
anJ _ m Bi [cnj(z.hi)] n Sll/aBl[an(z‘Hl)] Unj(zhl) (129)
bnJ - Al [cnj(zj*i)] -n SJ Al[QnJ(zJ‘l)] unj(zj‘l)
where the Wronskian relationship54
Bi’ (L) Ai(g) - Bi({g) Ai‘'(Q) = 1/m (130)

has been used and the primes denote the derivative with respect to the

argument. For the shear propagation matrix we obtain

172 exp(-cynjzj’l) =i exp(-Lynsz’i)/(ZynJ) v (z )
1/2 exp(¢7njzj‘1) i exp(Lwnsz§1)/(27nj) an(z;o1)

njl _

d
nj
(131)
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where substituting the unknown coefficients back into Equation (128) and

evaluating it at the top of the jth layer gives

unj(zj) Clx C12 © 0 unj(zj+1)
unj(zj) = C21 sz © © unj(zj¢1) (132)
an(zj) 0 0 C33 C34 an(zj+x)
v/ (z) 0 0] C C v/ (z )
nj J 43 44 nj j+i
where the elements of the compressional eigenfunction are given by
C11= n [ Ai[CnJ(zj)] Bi [an(zj’l)] - Al [an(zj‘l)] Bl[cnj(zj)] ]
(133a)

_ . . s . 1/3
C,=m [ Ailg (z)) Bilg (z 1)) - AL(g (2, 1)) Bi(g (2)) /s

12
(133b)
- s s s _ oass <, 173
C21— n [ Al (an(zj’l)) Bi (an(zj)) Ai (an(zj)) Bi (an(zj’i)) ]SJ
(133c)
and
C= ™ [ ailg (z )1 BiIg (z)] - AL7[g (2] Bilg (z )] ]
(1334d)
and the elements for the shear eigenfunction are given by
C33= C44= cos(ynJDJ) (134a)
-1 .
C34- -7nj 51n(7nJDJ) (134b)
and
3= T sin(ynJDJ) (134¢)
where DJ = zj*l- zJ is the thickness of the jth layer and 7nj is given after

Equation (100). For trapped compressional modes, only the exponentially
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decaying solution of the Airy functions must be used since there is no
acoustic source in the bottom. If Ai({) is evaluated at the exponentially
decaying part of the function, then Bi({) cannot be evaluated simultaneously
because it is exponentially increasing producing a floating point overflow in
the computer. Therefore, an Airy function subroutine that can calculate one of
the solutions, instead of both of them simultaneously, must be used Another
serious complication that occurs with the evaluation of Equations (133) is the
numerically unstable result when the subtraction of large but very close
numbers is performed. In the case where || >> 10 and Arg { = n the Airy

functions have the asymptotic forms,

Bi(g) — i Ai(Q) (135a)

and

Bi’ () — ¢ A1’ (Q) (135b)

which causes precision problems when evaluating the Wronskian and the elements
of the propagation matrix. These same propagation matrix coefficients have

55,56 .
’ in the area of quantum mechanics and he solved

been encountered by Gordon
the problem by direct substitution of the series solutions for the Airy
functions and its derivatives in Equations (133) to factor out the exponential
or sinusoidal functions. However, these where performed under the assumption
of purely real arguments of the Airy functions and the series solutions used
do not apply to complex arguments. A similar substitution and cancellation
technique is obtained by evaluating the numerically stable independent Airy
results given by Schulten, Anderson, and Gordon57 to avoid floating point
overflow and other precision problems.

In the water layers the propagation relationship reduces to

u (z) C C u (z )
nj J 11 12 nj j+1 (136)

unj(zj) C21 C22 unj(zj+1)
where the unknowns are given in Equations (133).

In the models to be described next, it is further assumed that the
acoustic properties of each elastic layer are constant. This is done for

simplicity and with the knowledge that it is not easy to determine all the
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fine-structure properties of the bottom sediments experimentally, therefore

the bottom is usually described as layers of constant properties.se’59

CASE A. RIGID FALSE BOTTOM MODEL

The rigid bottom interface is at j=F in Figure 4, the water-bottom
interface is at j=J, and the soft surface of the ocean is at j=1. The rigid
"false" bottom interface is artificially incorporated only to convert a
continuous wave number spectrum into a discrete form. Therefore, the trapped
modes will be treated as if the rigid bottom does not exist. Each watcr layer
has two unknowns to be determined, and each solid layer has four. The rigid
bottom has null tangential and normal particle velocity. Therefore, the
boundary conditions for the radiating modes at the "false" bottom interface

are

u (ZF) + v’ (zF) =0 (137a)

and

unr-1(zr) + En v (Zr) =0 (137b)

which have four unknowns for any trial value En of the eigenvalue squared k2.
n

These equations are conveniently written in the matrix form

u (z.) 0o -1
nF-1 F
unr-x(zr) = “n 0 vnF~l(zF) (138)
vnr-1(zr) 1 0 v’F ](z )
v/ (z.) 0 il
nfF-1 F

where the special 4x2 matching matrix is represented by MF.
This set of equations is substituted into the up-layer propagation matrix

for the F-1 layer to obtain
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nF-1Zpy)

R Var-1 %) (139)
R B TUF-r R | v (2)

v ( ) nF-1 F
nF-1 “F-1

Vor-1$Zpoy)

where both eigenfunctions and their derivatives are still to be determined.
This new recurrence relationship is substituted into the up-layer matching

matrix for the F-1 solid-solid boundary to obtain the new relationship

(z_ )
nF-2 " F-1
u’ (z_ ) vnr-1(zr)
F-2 “F-1 =M C M , (140)
F-1 F-1 F | v (z.)
v ( ) nF-1 °F
nF-2 “F-1
vnF—Z(ZF—l)

and by the same token, the matching and propagating matrices for the solid
layers are multiplied to each other until the water-bottom interface is

reached with the relationship

u (z)
nJ J
u’ (z) vnr-1(zr)
nJ " J =C M C ... M C M p . (141)
J I+l T Je1 F-1 F-1 F v (z)
v (z) nfF-1 " °F
nJ J
an(zJ)

The multiplication of the propagating and matching matrices in the solid

layers is now given by the 4x2 matrix

E=C M C .. M C M. (142)

Next is a use of the liquid-solid boundary conditions to evaluate the
compressional eigenfunction at the water column. The three boundary conditions

are

unJ_i(ZJ) = unJ(ZJ) + E an(zJ) (143a)
pJ-lunJ_i(zJ) =P, TJ unJ(zJ) - P, QJ an(zJ) (143b)
44




(T

NSWC TR 89-170

and

, - .2 _
2 unJ(zJ) + (2 g KJ) an(zJ) 0 (143c)

where the first two equations are needed to evaluate the compressional
eigenfunction in the liquid layer, and the third condition will be used as the
characteristic equation of the environment.

The first two equations are rewritten in matrix form as

u J(ZJ)
u  (z) T/R. 0O 0 -Q/R "
nJ-1 37| _ I 3 u’ (z)
PP I o 1 = 0 ns %5 (144)
nJ-1 J “n v (z)
nJ J
VnJ(ZJ)

where the 2x4 special matching matrix will be known as MJ. Substituting

Equations (137) into this set of equations gives

u J_1(2J) v r-1(zr)
n =M |7 ) (145)
u (z) J \Y (z)

nJ-1 J nF-1 F

Now comes the propagation and matching in the liquid layers. The method
is the same as for the solid layers, except that now the matrices to multiply

are 2x2. After propagating and matching up to the surface it is found that

\Y (z.)

u l(z ) F-1 °F
n =C M CMC ..M Cc ™ME]|" (146)
1 2 2 3 3 J-1 J=-1 J

1
‘ (z))
nl 1

v z
nF-l( F)

u

where the final product of all the propagation and matching matrices is

defined as the 2x2 matrix

FeCc M C MC ..M c M E. (147)
1 2 2 3 3 J

The pressure-release boundary condition of the surface (j=1) gives
un1(21= 0) = 0 and the derivative of the eigenfunction at the surface will be
arbitrarily set to unity since the normalization condition will take care of

its proper evaluation. This gives
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0 v F-I(ZF)
=F [ " (148)
1 vnr—1(zr)
where inverting F gives
_ _ -1
vnF_1(z ) = (F22 F12(F21/F11)) (149a)
and
' _ _ -1
vnF_i(zF) = (F21 F11(F22/F12)) . {149b)

A final substitution of the shear eigenfunctions at the rigid bottom
interface into Equation (141) gives the two necessary values to be substituted
into the chosen characteristic equation, Equation (143c). The trial value En
is the square of an eigenvalue kn when the complex characteristic equation (or

determinant) is null, i.e.,

_ s 2 _ 2 -
W(kn) = 2 unJ(zJ) + (2 kn KJ) an(zJ) 0. (150)

Note that the objective is to calculate only u;J(zJ) and an(zJ). Therefore,
there is no need to calculate the eigenfunctions at the other interfaces to
find the eigenvalues of the problem. This same method of matrix multiplication
is also used to evaluate the eigenfunctions at all the interfaces for the

normalization calculation described in the next chapter.

CASE B. SEMI-INFINITE BASEMENT MODEL

This model is used for the trapped modes and the radiating modes
undiscriminatingly. The trapped modes have the property that they are
exponentially decreasing with depth in an isovelocity layer and the radiating
modes represent out-going propagating waves that oscillate towards infinity
without reflections but with absorption which causes its damping. Both,
compressional and shear, eigenfunctions can be trapped or radiating.
Therefore, it is no longer appropriate to refer to a mode as simply trapped or

radiating. In fact, there are four mode classifications. There is the most
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common mode where the compressional eigenfunction is trapped and the shear

eigenfunction is radiating. This type of mode will be labeled a "T-R mode,"

where the first letter always refers to the compressional function. The

compressional eigenfunction of the T-R mode in the semi-infinite layer is

described by the exponential function

unF-l(Z) = anr_lexp(—nnr_lz) (151a)

and
unr-x(Z) =, unF-l(Z) (151b)

where niF_1= ki - k:_l The shear eigenfunction is radiating without
reflections, i.e.,

vmu1(2)= gﬁ_lexphqﬁuiz) (151¢c)
and

v r-1(2) =i, vnF_l(z). (151d)

nF-l(ZF-l) !
NSPRCD R I B U (2 ) (152)
vnF—l(zF-i) 1 v (z_ )
v oz ) nF-1 “F-1
nF-1""F-1 iy
nF-1

which gives the values at the top of the basement layer. Lets define the

special 4x2 propagating matrix in Equati

on (152) as CF )

and only two of its

elements must be changed if the mode becomes a T-T, R-T, or R-R mode. To

obtain the values at the bottom of the F-2 layer, we multiply by the matching

matrix at this interface which gives

nF-Z(zF-l)
nF-Z(ZF-l) ™ nF-l(ZF-l) (153)
F-1 F-1
(z_ )
nF-2 "F-1 \ (z_ )
v (2 ) nF-1  F-1
nF-2 “F-1
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which corresponds to Equation (140) in the previous matrix multiplication
method. By the same matching and propagating algorithm the values at the

surface of the ocean wave guide are reached with the relationship

0 unr-1(zr-1)
= F (154)
1 vnp_l(zr_l)
where the 2x2 matrix
F = C1 Mz C2 .o MJ CJ .. Mr-1 CF_1 (155)

is inverted to obtain unF_l(zF_l) and Vnr-l(zr-1)' After calculating their
derivatives using Equations (151b) and (151d), the solution is propagated up
to the top of the Jt layer to obtain u;J(ZJ) and an(zJ) which are n=eded to
calculate the characteristic equation, Equation (150). This method requires
one loop of matrix multiplications in the solid to obtain the matrix E in
Equation (142), which is saved for later use, but is also used to keep
multiplying matrices in the liquid layers.

After evaluating the eigenvalue, the eigenfunction may be calculated by
down-layer multiplication of propagation and matching matrices. For this
purpose, the matrices are slightly different from the up-layer ones. The
elements of the matching matrix in Equation (125) for down-layer matching of

the eigenfunctions are given by

+ v
M =M = Q + T /R , (156a)
11 33 341 j je1
v / R (156b)
M14 - Qj¢1 - Qj Je1’ 1
¥ ¥
M =M =T + Q /S , (156c)
22 44 j+1 J+1 j+1
%
M =T -T /R _, (156d)
41 341 ) 141
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M =M k:, (156€)

and

¥
M_=2(01-1/ SJ* ) 7/ Kk (156f)

32 1 Je1’

The arrows have been include to emphasize the down-layer propagation and
matching matrices and to distinguish them from the up-layer ones. The
compressional elements of the down-layer propagating matrix in Equation (132)

are given by

. |
C,,=m [Allg (z, ] Bi[g (z)] - AL"(g (z)] Bilg (z 1],

(157a)

Cl=n [AL(C (2 ) Bi(C (z)) - AL(E (2)) Bi(C (z_)) /'
12 ni Ty nj " J nj ) nj el 3

(157b)
¢’ =n [ A" (g (2)) Bi'(g (z ) - A" (L (2 ) Bi'(g (z)) ]s'
21 nj 3 nj 3+l nj T+l nj "} 37
(157¢)
and
\
C,=m [ Al[cnj(zj)] Bi [an(zj*l)] - Al [an(25¢1)] Bl[cnj(zj)] ].
(157d)
The shear elements of the down-layer propagating matrix are given by
N D) )
C33— s cos(ynj ) (158a
Y 7' sin(y_D) (158b)
3a. Tny SERNLY,
and
c in(y D) (158¢)
0 -znj sin 7nj ;) c

However, to obtain the eigenfunctions, the zeros of the complex
characteristic equation, Equation (150), must be found. The most optimum

method for finding the complex zeros may never be known*® since many
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challenging environmental conditions can be encountered. Examples are
csecondary sound channels and surface ducts which cause degenerate eigenvalues
with irregular spacing and some of these eigenvalues may be too close to each

60 has tackled a similar

other for the limited precision of a computer. Ellis
problem with a two-ended shooting technique, but the model incorporates the
effects of shear wave and the attenuation coefficients as an approximation for
small values, he does not take into account the radiating modes, and does not
search for the eigenvalues in the complex plane. However, a simple algorithm
may be obtained after analyzing the behavior of Equation (150) for a
simplistic ocean environment and it may be eventually improved as we encounter
more difficult situations.

The complex determinant in Equation (150) was calculated as a function of
the complex trail wave number for the very simple case of a water column over
a semi-infinite bottom layer. To start with a very simple case, the bottom is
a fluid layer with the acoustic properties in the second row of Table 1. These
fluid properties are obtained from Jensen}7 the properties of clay-silt, sand,
and basalt are taken from the paper by Werby and Tango?1 and the parameters
for chalk are given by Ellis'' The first case is the fluid bottom with a water
column 200.0 meters deep and a constant sound speed of 1500.0 m/s. The bottom
is fluid-like because of the very small shear speed (1.0 m/s) and the
relatively large shear attenuation coefficient to rapidly damp-out the
remaining shear contribution. The frequency of the sound is 25.0 Hz and all
other bottom properties are given in Table 1.

The ccntour plot of the complex determinant is displayed in Figure 6. The
dash curves represent the contour where the real part of the determinant is
zero, and the solid curves represent the contour where the imaginary part of
the determinant is zero. Since both components of Equation (150) must be zero
simultaneously, then the complex eigenvalues are given by the points where
both curves intersect. Note that these curves are perpendicular at the point
of intersection, therefore Equation (150) is an analytic equation that
satisfies Cauchy-Riemann relations. This simplifies the Newton-Raphson method
for converging into the complex zeros. The real part of the determinant along
the real axis is plotted in Figure 7 where the number of eigenvalues is equal
to the number of zeros of this curve. The maximum trail wave number is given

by the minimum speed in the water column and a general behavior of this curve
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is that it tends to infinity as the wave number approaches zero. A search for
the change in the sign of this curve will be used to obtain an initial
estimate of the eigenvalue. Nagl‘l made a detailed study of the behavior of
the purely real eigenvalues along the real axis and derived the useful

approximation

k(n) = (nmec )/(2f zj) (159)

which gives the approximate spacing of the eigenvalues as a function of the
mode number n, the frequency f, the depth of the ocean floor, and the minimum
sound speed in the water column. This equation is used to establish the step
size in the search for the first couple of eigenvalues. The spacing between
the previous two eigenvalues is later used to establish the step size for the
next eigenvalues.

After these zeros are found, we vary the imaginary part of the trail wave
number in order to follow the dash curves in Figure 6 until a change in sign
of the imaginary part of the determinant is detected. Newton-Raphson46 method
was tried to pin-down the complex eigenvalues in double precision accuracy but
there where times when it converged to unrealistic values. This method was
also used by Otsubo®? for relatively simple ocean environments without the
effects of shear waves but we have discarded it as "not uniformly convergent."
A more uniformly convergent method is described by Morris48 where, instead of
searching for the complex zeros of Equation (150), we search for the local
minima of the magnitude of the determinant. These minima are located exactly
where the complex eigenvalues are, the method uniformly converges to the local
minima, but the convergence is slightly slower than the Newton-Raphson
method. Since the uniform convergence is more important, this is the method
used in this model.

A plot of the eigenvalues in the complex k-plane is given in Figure 8
where the three trapped modes have eigenvalues with negligible imaginary
parts, and the four radiating modes have eigenvalues with real parts smaller
than 0.09 1/m. Note that the radiating eigenvalues have such a large imaginary
part that they get rapidly attenuated as they propagate in range therefore
contributing only to the intensity near the source.

If a rigid false boundary is placed at a depth of 1200.0 meters?3 the
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radiating spectrum becomes the one displayed in Figure 9, which agrees with
Miller's perturbative approximation. The real part of the minima corresponds
to the four radiating eigenvalues in Figure 8, which means that the rigid
false bottom method is trying to give preference to the true radiating
eigenvalues over the "pseudo-eigenvalues" by giving the latter a larger
imaginary part.

The trapped and radiating eigenvalues are not unique in the complex wave
number spectrum. Surface waves may also be incorporated in this ocean model.
The surface wave produced at a solid-vacuum interface is called a Rayleigh
wave. In the case of a liquid-solid interface the surface wave is called a
Generalized Rayleigh wave, while the solid-solid surface wave is called a
Stoneley wave. These waves satisfy the wave equation and the boundary
conditions but they decay exponentially in both directions very rapidly.
Therefore surface waves are not expected to be of extremely high importance
when the receiver is greater than a wavelength away from interface, even
though they may be added in these transmission loss calculations without
complications?s’64

The spherical waves diverging from the source may be expressed as the
infinite summation of plane waves. Each plane wave hits the liquid-solid
boundary and each solid-solid interface of the wave guide at a different angle
of incidence. Some of them will have an angle of incidence greater or equal to
the compressional critical angle and/or the shear critical angle of an elastic
layer. Under this condition, total internal reflection occurs and the wave
propagates parallel to the interface. This wave is also called a surface wave
since its amplitude decays exponentially with the normal distance from the
interface along which the propagation occurs.

Lateral waves propagate at the solid side of the liquid-solid interface
and they are automatically incorporated in the model when the trapped and
radiating modes are used. When a spherical wave from a nearby source hits the
liquid-solid interface, two lateral waves are created which will propagate in
the elastic layer and parallel to the interface. One is caused by the shear
critical angle of incidence and the other 1s caused by the compressional one?s
As they propagate, they reradiate back into the liquid layer causing the
Schmidt head wave.
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CHAPTER 7

THE NORMALIZATION COEFFICIENT

The depth functions are complete and orthogonal. However, they are not
necessarily normalized since the wave equation is satisfied regardless of the
constant in front of the solution. Remember that the derivative of the
eigenfunction at the surface has been set to unity under the condition that
the normalization constant would take care of this last unknown. For the
transmission loss calculation in the next chapter, the summation of normalized
eigenfunctions is needed to obtain the proper contribution of each mode.

The normalization constant for each mode is given by

F-1

Nn = J;l Nnj (160a)

where N s is the contribution of the jth layer to the nth mode, i.e.,
n

2j+1
Nnj = pj J unj(z) unj(z) dz. {160b)
ZJ
The normalization coefficient is in general a complex number, and the
elgenfunctions at all the interfaces are known after the eigenvalues are
found.

In this ocean model, the water layers have variable sound speed and
negligible attenuation coefficient compared to the absorption of the bottom
layers. However, these elastic layers of the bottom have constant acoustic
properties. Therefore, the normalization calculation for both types of layers
is different.

The water layers are defined to be the ones where 1 = j < J. Gordon's

formulasss provide the analytical irtepratinn of a linear combination of Airy
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functions. The formulas to use are

J Ala(z+b)] Bla{z+b)] dz = (z+b)AB - A’B'/a (161a)
and
A'B - AR’
JA[a(z+b1)] Bla(z+b )] dz = — (161b)
a (b~-Db)
1 2
where
A[a(z+b1)]EalAi[a(z+b1)]+blBi[a(z+b1)] (162a)
and
B[a(z+b2)]5a2Ai[a(z+b2)]+szi[a(z+b2)] (162b)

represent any linear combination of Airy functions.

Equation (16l1a) relates to Equation (160b) where A = B. In this case,

1/312101 (163)

_ 2 ,2
=P, [ (z+ &nj) unj(cnj) + unj(CnJ)/SJ

Nnj
J

where

&njE(k‘j-k:)/Sj—zj. (164)
Note that, even if the attenuation coefficient of the water column is
neglected, the argument of the Airy functi-n is complex because of the complex
eigenvalue. Therefore, the absorption of ‘he bottom layers are affecting the

propagation of sound in the water column

The calculation of the normalization contribution in the elastic layers
is simplified by the assumption of sediments with constant acoustic
properties, but a distinction must be made for the case where the function
decays exponentially with depth (trapped mode) or if it oscillates (radiating
mode) .

In the case of a trapped mode, the compressional eigenfunction in the jth

"j “j J “J j
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for z =z =z _ and where "i; = k: - kj. Substituted into Equation (160b)

J J+1
gives the solution

3 2 - -
N, =P, u,(z) {1 exp[-2 D, nnj]} /(2 ] (166)

where Dj = 23.1- z 1is the thickness of the elastic layer.

The compressional eigenfunction to use for the oscillatory depth function

in the jth layer is
- _ , -1, _
unj(z) unj(zj) cos[nnj(z zJ)] + unj(zj) nnJ 51n[nnj(z zj)] (167)

and the Equation (160b) becomes

) s 2\ sin(2 D 7 )
u ! =D + ] nJ +p u _u
2 ) 4 7 J nj nj
nj
(168)
where the argument of the eigenfunction has been omitted for simplicity and

where J = j < F.
Finally, the normalized eigenfunctions and their derivatives are given by

unj(z) = unj(z) / N;/Z. (16%9a)

u;J(z) = u;j(z) / N;/z, {169b)

;nj(z) = vnj(z) / N;/z, (169c)
and

v (2) = V! (2) / N:/Z. (169d)

After all the eigenvalues and normalized eigenfunctions are found, it is

next to calculate the transmission loss of sound in this ocean wave guide.
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CHAPTER 8

THE TRANSMISSION LOSS

Any massive object that vibrates radiates acoustic energy. Power is the
time rate at which energy is radiated and intensity is defined as the rate of
energy flow through a unit area. The intensity is a vector quantity which also
gives the direction of the energy flow. However, the fluctuations of the
intensity, the pressure, and the power are of order of magnitudes and this
presents problems when plotting them. Therefore, in acoustics, the intensity
is converted into decibels in order to reduce the high fluctuations. The power
of background noise is about 30uWatts with a maximum sound pressure of
3000uPascals which converted into decibel units gives a sound pressure level
of about 40dB. However, the power of very loud music may be 30 Watts with a
sound pressure of 3 Pascals which corresponds to a sound pressure level near
100dB.

The transmission loss is defined as

i (170)

TL = - 10 log[
o

I(r.z)]

where, in the water column, I(r,z) is the magnitude of the acoustic intensity
in Equation (33) and Io is the reference intensity at one meter from the
source in the water column. Since spherical spreading of the waves occurs at
one meter from the source, the reference intensity is equal to the square of
the time-averaged rms pressure at one meter from the source divided by the
acoustic impedance at this same distance. The reference pressure is given by

Equation (28). Substitution of the scalar potential into Equation {(28) gives

N . -
p(r,z) = - w p(zo) p(z) Zlu zo) un(z) Hél)(knr) (171)
ns

(
n

Lol R
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and this expression substituted into the transmission loss expression gives

TLc(r,z) = 20 log

N . -
~inp(z) Y u (z) u (2) H;”(knr) (172)
n=1

which is called the coherent transmission loss because the phase factor of
each mode has been taken into account in the summation, and the absolute value
is taken after the summation is completed. The layer subscript j has been
erased from the variables to minimize the complexity of the equations. Note
that the transmission loss is also a function of the depth of the source z
and the fact that the acoustic intensity is proportional to the pressure
squared has been used. This coherent transmission loss is highly variable in
space due to phase-dependent interference effects among the eigenfunctions and
a smoother function is more appropriate for sonar predictions.

The detailed interference effects may be rveraged-out to yield smooth
transmission loss curves by summing the indiviaual modal energies. The result
is called the incoherent transmission loss. The resulting incoherent

transmission loss in the water column is

N . -
TL (r,z) = 10 log[nzpz(z) Z tu (z ) u (2) Y (k r)|2] (173)
i n O n o] n

n=1

where the logarithm is of base 10, the transmission loss is always purely
real, and its dimension is in decibels.

In the elastic layers, the intensity at the point of observation is now
given by the expression

Ir,z) = | B+ V| (174)

where B is the stress matrix in Equation (111) and V is the particle velocity
in Equations (55), (60a), and (60b) where the potentials are given in
Equations (86) and (101). With these equations, the vector intensity is

written as
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T=8.9 = 1L r+l z (175)
where
avr vr sz avr av
= — — —_— —_ _z {
Ir Vr[(A+2“) ar * A [ r * 8z ] ] * vz K [32 * or ] /W
(176a)
and
avz vr avr avr 8v
= —_— —_ _— — .__z {
L Vz[(l+2“) gz [ r tar ] ] TV M [ 3z ' ar ] st
(176b)

Direct substitution of the scalar potentials in Equations (86) and (101} into

the particle velocity components in Equations (60a) and (60b) gives

v (r,z) =
z

N
n=1

(v.). (177)

where the contribution from the n*" mode is given by

(v.) = (/8) plz) u (z) [ (2) + k2 v ()] B (k r) (178)
z’n o n ] n n n o n
and
N
v(r,z) =% (vr)n (179)
n=1
where
(v) = (8) p(z) u(z) [u(z) + v ()] k Y kr)  (180)
rn o} n <] n n n (] n

and the prime over the Hankel function stands for the derivative with respect
to the argument.
By the same token, the derivatives of the components of the particle

velocity are given by the summation of the modal contributions given by
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(8v_s8r) = (i/8) p(z) u (z) [0 (2) + k¥ v (2)] k H™ (k1)
z n [} n ] n n n n [+] n

(181a)
(v s8r) = (i/8) p(z ) u(z) [u(2) + v/ (2)] k¥ HM“(k r)
r n (] n © n n n (] n
(181b)
(v /82) = (i/4) p(z ) u (z ) {kz[ﬁ (2) + v/ (2)] - K*(2) u (z)} Y (k_r)
z n o n (] n n n n (-] n
(181c)

and

(v /82) = (i/8) plz ) u (z) [0/ (2) + K2 v (2) - k*(2) v (23] k. H (k1)
r n o] n (] n n n n n (o] n
(181d)

where H(“”(x) = - H“)(x) - H“)’(
[+ o] [o]

x) / X. After calculating the particle
velocity and their derivatives, these are substituted in the intensity and

this one in the transmission loss equation

TLC(r,z) =5 log

12+ 1° l (182)
r 4

to obtain the coherent transmission loss in the elastic bottom layers with
unit reference intensity.
For the incoherent transmission loss in the solid layers, the components

of the intensity are calculated for each mode, i.e.,

avr (vr)n avz
), =1 ™, [‘“Z“’ [F]n* AL [E]n] ] *

and
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v, (v av_
(1), (v) [(7\+2u) ["67']; Al =7 [ar ]n] ] +

(183b)
and they are added using
N
I =Z (1) (184a)
r rn
n=1
and
N
I =Z (1) (184b)
z e Z n

to substitute into Equations (182), where the subscript in the transmission
loss is replaced by the incoherent one.

Use caution when predicting the propagation of sound using any incoherent
transmission loss expression since this is just an approximation to obtain a
smooth curve. The coherent and incoherent transmission loss curve should be
displayed together to be aware of the variability of the result.

As an example, the transmission loss (see Figure 10) is calculated using
the seven eigenvalues in Figure 8. The solid curve represents the coherent
transmission loss and the dash curve is the incoherent calculation. The depth
of the source and the receiver is 112.0 meters. The high oscillations of the
coherent curve is caused by the constructive and destructive interference of
the trapped modes. The radiating modes hardly contribute to the transmission
loss calculations in the water column because of the large imaginary part of
their respective eigenvalues.

As usual, if the acoustic properties used are inaccurate, then the
calculated transmission loss will be erroneous.

Hamilton has been actively involved in the determination of the geo-
acoustic properties of the ocean floor by the use of more easily measurable
quantities. His work on the determination of the compressional sound speed in
the elastic bottom is presented in References 66 and 67 while some results of

the shear wave velocity are given in Reference 68. The shear and compressional
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attenuation coefficients are given in References 69 and 70 and an informative
geo~acoustic compendium is available in Reference 71. Laboratory measurements
of the shear speedv? and the shear attenuation coefficient > have been made as
functions of depth and frequency, but there are concerns about the
effectiveness of a laboratory to mimic the conditions that the sediment
encounters under the unusual pressure and temperature of an ocean column. An
accurate non-destructive method must be created for the proper evaluation of
these acoustic properties. Even though there are disagreements about most
geo-acoustic properties, a couple of inequalities have been created based on
experimental observations>® The ratio of shear to compressional attenuation

coefficients should satisfy

bj/cj = v0.75 (185a)

and the ratio of shear to compressional attenuation coefficients should

satisfy

B/ = 0.75 (cj/bj)z (185b)

for each elastic layer from j =J, ..., F-1.
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CHAPTER 9

COMPARISON WITH SIMPLE RANGE-INDEPENDENT MODELS

A few very simple range-independent benchmark ocean models will be

considered to compare our calculations.

1. The first model is a one-layer water wave guide with constant acoustic
properties, a pressure-release surface, and a rigid bottom. This model
resembles the infinite well in quantum mechanics with the exception that the
boundary condition at the bottom is u;(z=D) = 0. The soft surface is described
mathematically by un(z=0) = 0 and the eigenfunction that satisfies the wave

equation and both boundary conditions is given by

u (z) = a sin(n 2), n=1, 2, 3, , N (186)
n n n
where
n=(wrse®-x2)"% = (n- 1/2)0/D (187)
n n
which provides the eigenvalues
ki = w¥c? - (n - 172)%°D° (188)

without the necessity of a characteristic equation to search for the zeros.
Note that the fundamental mode is given by n=1 and as n increases, the
eigenvalue decreases towards zero unti] a limit is reached when kn converts
from purely real (propagating mode) to purely imaginary. The maximum number of

modes N is obtained by setting kN=0 giving
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(189)

g
N.l o

The normalization equation provides the amplitude of the eigenfunctions. The

resulting amplitude is

ai = 2/(pD) (190)

where p is the density of the water and the subscript n is not necessary
because the normalization coefficient is constant for all the modes. Finally,
substitution of the normalized eigenfunctions in the equation for the coherent

transmission loss gives

(1)

TL(r,z) = 20 log .

N
-2ni/D sin[(n - 1/2)nz /D] sin[(n - 1/2)nz/D] H ' (kr)
=1 0 n

n=
(191)

where the density of the water has been canceled out from the transmission
loss calculation providing no contribution. The same result would be obtained
if the orthonormalization condition has no weighting function. The density
would contribute only if a finite impedance mismatch exists in the wave guide.
Note also that this model allows the introduction of the attenuation
coefficient as the imaginary part of the sound speed. This provides complex
eigenvalues but the eigenfunctions are still purely real.

If the liquid layer is 200.0 meters deep and has a sound speed of 1500.0
m/s then the 25.0 hz source mentioned in the previous sections would excite

seven modes with the eigenvalues given in the second column of Table 2.

2. The second model is similar to the first one, but the bottom boundary is
a pressure-release interface. In this case, the eigenfunction is still given
by Equation (186), but with

ni =(n) /D, n=1,2,3, ..., N (192)

where
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N=(wD)/ (nc) (193)

and the maximum amplitude of the eigenfunction is still given by Equation

(190). The eigenvalues are now given by
k: = w’rc? - n°nf/D? (194)
and the final transmission loss equation is

1)

TL(r,z) = 20 log o

(knr) . (195)

N
-2ni/D ) sin[(nmz )/D] sin[(nmz)/D] H
=1

n=

The six resulting eigenvalues for the case of a 200.0 meters deep water column
with a sound speed of 1500.0 m/s, a soft bottom, and a 25.0 hertz continuous
wave are given in the third column of Table 2. Note that the soft-bottom
eigenvalues are practically located half-way between the locations of the
rigid-bottom eigenvalues and it is expected that the true eigenvalues for a

wave guide with penetrable bottom be located between these two limiting cases.

3. Another way to compare the calculated eigenvalues is to use the
perturbation method for small attenuation coefficients. If the elastic media
has a negligible shear contribution and the compressional attenuation
coefficient in each layer is very small, then both methods must give nearly
the same answer.

Consider the complex eigenequation,

2
d _ L(2) + [A%(2) - k%] u (2) = O (196)
dz2 n n n

where we redefine the wave number as k(z) = k(z) + ica(z), € is used here to
keep track of the effects of every term in the resulting approximate complex
eigenequation and it will be set to unity at the end of the calculations, «(z)
is the attenuation coefficient in nepers/meter, and k(z) = w/c(z). The
complex wave number in Equation (196) makes the eigenvalues and eigenfunctions

complex. If a(z) << k(z), then we can use the perturbation method to obtain a
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more accurate transmission loss. In this case we will write

u (z2) — u'? + g0t o+ HY (197a)
n n n n
and
B a9 s e L AP (197b)
n n n n
which substituted in the complex eigenequation gives,
2
[3—— +k2(z)+2Lck(z)a(z)-ezaz(z)-A(O)-cA(1)-ezl(2)][u(°)+ eul 4 ezu(Z)]zo
Z2 n n n n n n
(198)

which is an approximation to the complex eigenequation Equation (196) due to
the expansions Equations (197).
Combining the e’ terms of this equation gives the 0'" order solution to

the problem, or

2
d (0}
— u
2 n

dz

(0) ©)
Ju

+ [K3(2) - A =0 (199)

n

which is the unperturbed eigenequation that has been solved for the purely
real eigenvalues ALO) = k: and eigenfunctions U;O) = u_ . This unperturbed
eigenequation corresponds to Equation (69).

Combining the terms with cl, which corresponds to the first order

perturbation terms, gives

2
w4 Rik@alz) - AP0 ¢ K2 - A1 0 =0 (200)
2 n n n n 1
dz
where the unperturbed eigenfunctions are normalized by
z
b (0) (0)
Jp(z) u'®(2) 0 () dz = & (201)
0 n m nm

where z, is the depth of the resilient bottom of the basement.
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Multiplying Equation (200) by puiO) and integrating yields
z 2 (1) z

z

b u b b

J‘pu(m P4z + J ou'® [2ik (2)a(2)-A P 10 Pdz + fpu(°)[ka(z)-)\(o’]u(”dz=0
n dzz o n n n o n n n

)

(202)
where using the orthonormality condition of the unperturbed eigenfunctions in
the second term of this equation, integrating by parts twice the first term,
and using the boundary conditions at every interface to cancel out the surface
contributions gives

2 (0)
d"u z

z z

b b b

f pu(l) 2 dz + 20 I pu(O)k(z)a(z)u(O)dz + I pu(o’[kz(z)—A
n 2 n n n

0 dz 0 0

(0), (1) (1)
Juiiidz = A
n n n

(203)
and with the help of Equation (199) the first and second integrals cancel out

giving us the expression

z

(

A (0);2
n

b
Ve jp k(z) a(z) |u'”|%az (204)
o]

which is the first order perturbation term for the eigenvalue and its values
are purely imaginary.
Now we write the perturbed part of the eigenfunction under the basis of

the unperturbed part since this is an orthonormal basis, i.e.,
ul’= oA ul® (205)
nm

and substitute in Equation (200) to obtain

d2u(0)
ZAM[ = + (kz(z)-x:”)u"f”] + [2Lk(z)a(z)—>\;“ (@
o dz

n

Ju 0 (206)

L]

then multiply by pu:0) and integrate as done before. Integration by parts

twice cancels a few terms, and the orthonormality condition yields
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Zp
24 (0)

An]= ;752_;?370J p k(z)al(z) uLO)ul dz (207)
n 1

which is in terms of the unperturbed eigenfunctions and eigenvalues, is

directly proportional to the absorption coefficient, and is a purely imaginary

term.

In the cases of trapped modes, where the imaginary part of the
eigenvalues is extremely small, we can rely on the rapid convergence of the
perturbation method and forget about a second order perturbation term. When
radiating modes are taken into account, we must consider calculating the
second order perturbation term.

The €2 terms of Equation (200) into a second order equation gives

2
a2, (k2(2)-2P 10?4 [2ik(2)a(2)-2P 0= [B(2)+2 @ 0@
2 n n n n n n n
dz
(208)
which multiplied by pu:O) and integrated as done with the first order
eigenvalue leads us to the equation
z z z
(2) ® (0)_ (1) W2 ) (1) > 2 (0,2
A= ZLka(z)a(z)u u ‘dz - A Ipu u ‘dz - Jpa (z)|u " |"dz
n n n n n n n
0 0 0
(209)

where substituting Equation (205) and the orthonormality condition of the

unperturbed eigenfunctions gives

2z

z

b b

A= ZLZ A ka(z)a(z)u(O)u(O)dz - Jpaz(z)|u(°)|zdz (210)
- nmo n m o n

n

or with Equation (207) we get the simpler form

z
b
N Z A2 (a0l a0y o Ipaz(z)|u
n o nm n m 0

©)1242 (211)

n

which is purely real and a much smaller term since it is proportional to az.
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If we write
u'd= Z B u(O) (212)
nm

then Equation (208) becomes

2
z g 94_ u(0){ B [kZ—A(O)]u(°)+Z A [2ika-2M 10 9= [02-2@ @
nm 2 m nm n m nm n m n n
m dz m o
(213)
which multiplied by pu:°) and integrated using integration by parts and the

orthonormality condition reduces the equation to

A0 A9y g =AM - Z A A 1#n (214)
1 nl n nl

n am lm’
m
which makes B . purely real and directly proportional to o’
n
We have already assumed layers of constant density in order to simplify

the elastic wave equation. Therefore, we may define an element of a G-matrix

as
J+1 z
Ja1 0) (0)
G =2 P k (z) a (z) u "(z) u "(z)dz =G (215a)
nm J 2 b J nj mj mn
=1 J
and that of an H-vector as
J+1 j+1
H=) »p Jaz(z)fu(O)lzdz. (215b)
n J nj

Note that all elements of the G-matrix are purely imaginary and symmetric,
while those of the H-vector are r.rely real. These integrals must be
evaluated in order to calculate the perturbed parts of the eigenvalues and
eigenfunctions.

Now the first order perturbation term of the eigenvalue, Equation (204),

becomes

Mo g (216)

n nn

A
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which tells us that the diagonal components of the G-matrix are the
first-order perturbation term of the eigenvalues. The second order term,

Equation (209}, simplifies to

(2) Gi)
A = § A0, © B (217)
1¥n n 1
which substituted into
k2 = A(°)+ A(1)+ A(Z) (218)
n n n n

gives the perturbed eigenvalues of the problem. Since A(l) is the only
n

contributor to the imaginary part of the eigenvalue, we may define

(219)

as the real part of the eigenvalue. Then to obtain kn from Equation (218) we

expand its square root as follows:

A A
saen(1+“ ]=7e+“ (220)

(1)

where we have assumed that R: >> An Now the imaginary part of the

eigenvalue will be defined as

§_D0 (221)

which is the same expression in Equation (474) of Reference 53 where only
first order perturbation has been used. By the same token, the real part is

given from Equation (219)
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(2)

? o~ JX(O)-& _——n (222)
n n Zﬁ(O)
n

where it is assumed that A:2)<< AiO)

and the same power expansion has been
used. Equation (221) is a crude approximation made by many underwater
acousticians and it can be avoided by taking the complex square root of
Equation (218).

As the first order correction of the eigenfunction, Equation (207) simply

becomes

A = nl___ . nzl (223)

and for the second order correction, Equation (214), we get

-G G ) G G .
B 1= (0)nn <3) 2 * E (o) (8? m(O) o’ n#l (224)
G R R (A= ") ; =)

n 1 m¥*n n m n

which substituted into the equation

u (z) = u®s }Z: (A +B ] u'© (225)
n nl nl 1

n
1#n

gives a better estimate of the eigenfunction.

It is left to properly evaluate the G-matrix and the H-vector in
Equations (215). They can be obtained by numerical integration or by the
approximate method deveioped in Reference S3. Since we are interested here in
the simple case of a semi-infinite fluid-type bottom Equations (215) become
trivial integrations of exponential functions. The resulting trapped
eigenvalues are given in the fourth column of Table 2. Note that the second
order perturbation term was not enough to make the real part of the eigenvalue
closer to the exact one. Therefore, the attenuation ccefficient chosen by
Miller*?'*?

results for the trapped eigenvalues, and it is presumably worst for the

is too high for the perturbation method to produce accurate
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radiating ones.

4. The next model is a layer of water over a semi-infinite elastic layer
which was used by Ellisll to model the propagation of underwater explosives
over an ocean floor made of chalk. Both layers have constant acoustic
properties. Since the surface of the water is pressure-release, the

eigenfunction is given by

u {(z) = a sin(n z) (226)
nl 1 nl

where nil = kf - k: and where z= 0 =2z« 22. The compressional and shear
eigenfunctions in the semi-infinite layer radiated without reflecting back,

therefore the compressional mode is given by

unz(z) = a, exp(cnnzz) (227)

where n2 = k2 - k2 and the shear mode is
n2 2 n

v (z) =Db exp(iynz) (228)

n

2 2 2 .
where 7~ = x~ - k. The three unknown constants, al, a2. and b, are determined
n n

by the three liquid-solid boundary conditions in Equations (113), (115), and

(116). Direct substitution of the given eigenfunctions in the three boundary

conditions provides two equations with the three unknowns, i.e.,

. ) 2 .
a, n, cos(nnizz) =ajn exp(cnnzzz) + kn b exp(tynzz) (229a)
and |
k% a sin(n 2z ) = (k%- 2k%)a_explin z ) - 2p K° b iy expliy z)
pi 1 T7n1 2 pz n 2 P nn2 2 p2 n 3n2 P 7n2 2
(229b)

and a third equation with two of the unknowns, i.e.,

; 2 - 2 . ; = DG~
2 a, im exp((nnzzz) + (2kn K ) b exp(<yn222) 0. (225¢)
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If this third equation is solved for one of the unknowns to be substituted
into the other two equations, we obtain two equations with two unknowns. The
two equations are divided to eliminate the remaining unknowns, ard to form the

characteristic equation

2,2

Wk )=mn, K tan(n z) + i p/p [ (ZkE k) v dy m ki ]=o0

(230)
which is a complex equation even if the attenuation coefficients are not
included in the model. The transmission loss is calculated using the same
equations derived in the previous section.

Substitution of the parameters in the "Fluid bottom" case, shown in Table
1, into this simple model gives the three eigenvalues displayed in the last
column of Table 2. These eigenvalues agree with double precision accuracy with
the ones obtained using our multilayered model, hence the figures in the last
column of Table 2 represent the solutions from both methods. Double precision
accuracy was also found between the resulting eigenvalues from this simple
model and our multilayer model when the bottom is a semi-infinite layer of
Clay-silt, Sand, Basalt, or Chalk (see Table 1).

Note that these eigenvalues are located between the rigid-bottom and
soft-bottom eigenvalues. Hence, these two simple cases may be used to
establish limits to the eigenvalues searched.

With the use of these simple models, the range-independent multilayer
model has been compared in the limit when the number of layers is a minimum
(with or without shear waves). Therefore, some transmission loss results will
be made for the various bottom types given in Table 1.

The first case to consider is a water column 2C0.0 meters deep over the

semi-infinite sand ocean floor with the acoustic properties in Table 1. A
total of seven eigenvalues were found (see Figure 11) for a 25.0 Hz source. |
The real part of the normalized fundamental mode is shown in Figure 12 where

the solid curve represents the compressional eigenfunction and the dotted

curve is the shear contribution. The imaginary part of this fundamental mode

is displayed in Figure 13 where the discontinuity at the liquid-solid

interface is caused by the impedance mismatch and the presence of the shear

contribution. The first three eigenfunctions are T-R modes because the

compressional sound speed in the basement layer is greater than the sound
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speed in the water column (1500.0 m/s) and the shear sound speed is smaller
than the water sound speed. The fourth and higher depth functions are R-R
modes. The real part of the fourth mode is given in Figure 14 where the
compressional eigenfunction starts to oscillate into the bottom. The imaginary
part of this mode is plotted in Figure 15. Note that the first and fourth mode
are damped out when they reach the depth of 600.0 meters. At this depth the
higher order radiating modes take over in the transmission loss calculation.

For best visualization of the propagation of sound in range and depth, the
three-dimensional plots and the contour plots have been proven to be useful
tools. The advantage of the three dimensional plots is that every calculated
point is plotted. However, the disadvantage is that it is more difficult to
visually extrapolate the numerical values of any point. The advantage of the
contour plot is that it is a two-dimensional plot and numerical values can be
roughly extrapolated visually, but not all the calculated values are used to
obtain the contours and there is less information in this type of graphical
display. For the various tastes of the readers, both plots will be displayed.

The three~dimensional transmission loss plot versus range (in kilometers)
and depth (in meters) is given in Figure 16 for the same case of the
semi-infinite sand basement and a 25.0 hertz source located 100.0 meters deep.
The transmission loss at the liquid-solid interface has been intentionally
omitted from the plot to mark the location of the water depth. Note the
oscillatory behavior of the transmission loss surface at short ranges whirch is
caused by the interference of the seven normal modes of this wave guide.
However, the high imaginary component of the excited eigenvalues (see Figure
11) causes all the modes, except the fundamental mode, to completely damp out
at ranges beyond 10.0 kilometers. The contour plot for the results in Figure
16 is displayed in Figure 17. The legend at the bottom of the contour plot
relates the curve type to the contour transmission loss value in decibels.

The next case to consider is the 200.0 meters deep water column over a
semi-infinite clay-silt ocean floor with the acoustic properties in Table 1. A
total of seven eigenvalues were found (see Figure 18) for the 25.0 Hz source.
The real (imaginary) part of the calculated fundamental mode is plotted in
Figure 19 (see Figure 20 also). A very interesting observation made is that
all the modes are R-R modes which radiate into the bottom. This is because the

compressional speed in the solid basement is almost equal to the water sound
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speed. Also, there is hardly any contribution from the shear waves because of
the relatively low shear speed of the clay-silt ocean floor. Since the excited
modes display the same oscillatory behavior, they are not illustrated. The
three-dimensional transmission loss plot in Figure 21 exhibit a faster decay
of the contribution from the excited modes, compared to the sand bottom case
in Figure 16, despite the lower attenuation coefficients. At ranges greater
than 5.0 kilometers the fundamental mode becomes the only contributor to the
transmission loss. This rapid decay of the higher modes is caused by the very
low compressional sound speed of the clay-silt basement. Only R-R modes are
excited by the source and these radiating modes are strongly affected by the
acoustic absorption of the bottom. The trapped modes in the sand bottom case
are evanescent in the bottom and are much less affected by the high
attenuation of sand. Comparison of the contour plot for clay-silt bottom (see
Figure 22) with the one for sand bottom (see Figure 17) shows that the
fundamental mode propagates further in the water column if the bottom is made
of sand. The same conclusion can be obtained by comparison of Figures 16 and
21, but it is easier to visualize with the contour plot.

It is almost impossible to find a water column directly over basalt.
However, the case will be considered only for its interesting acoustic
features. Note, from Table 1, that basalt has lower attenuation coefficients
relative to those of sand or clay-silt and that both sound speeds are much
higher than the water sound speed. The eight complex eigenvalues found are
plotted in Figure 23. The first five modes are T-T modes because of the high
sound speeds of basalt. Figure 24 displays the real part of the normalized
fundamental depth function and Figure 25 is the fifth normal mode* As the mode
number increases, the effects of bottom absorption increases and the imaginary
part of the eigenvalue in Figure 23 increases. The sixth mode (see Figure 26)
is the first R-T mode and absorptive effect to the oscillatory compressional
mode is different from the effect to the exponential one, hence the irregular
pattern displayed in Figure 23. The seventh eigenvalue corresponds to the

second R-T mode (see Figure 27), anc the last eigenvalue represents the only

*To minimize the number of figures displayed for this case, the imaginary part
of the eigenfunctions are omitted.
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R-R mode (see Figure 28) of the set.

The three-dimensional plot of the coherent transmission loss for this
case is given in Figure 29. All the modes contribute to the transmission loss
for ranges smaller than 5.0 kilometers. In the case of larger ranges, only the
first four normal modes are needed. The second, third, and fourth modes are
not damped out at 10.0 kilometers because they are T-T modes that propagate
mostly in the water column and experience a negligible effect from the
absorption of the bottom. The fifth mode is also a T-T mode, but the imaginary
component of its eigenvalue (see Figure 23) is much higher, causing the mode
to dampen out rapidly.

The contour plot for this same data is provided in Figure 30 where the
discontinuity in the transmission loss at the liquid-solid interface is a
result of the impedance mismatch of the boundary. The highly oscillatory
behavior of the transmission loss makes the contour plot somewhat complicated
to interpret. In this case, the three-dimensional plot may be more useful.
However, the contour plot does show the bundle of acoustic energy that
scatters the bottom several times at the critical angle of incidence. There
are 17 surface and bottom bounces for ranges between 3.83 kilometers and 14.85
kilometers. This corresponds to a critical angle of incidence of about 72.8
degrees relative to the vertical axis. This plot provides a relationship

between the normal mode theory and the ray theory.
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CHAPTER 10

ADIABATIC NORMAL-MODE THEORY WITH SHEAR WAVES

After verifying that the range-independent normal mode calculations agree
with the calculation obtained with simple benchmark models, the next step is
to include range dependence with the shear effects of the elastic bottom
sediments.

The range-dependent Helmholtz equation in the water layers of the ocean

wave guide is given as,

Vool(r,z) + kK3(r,z) ¢(r,z) = ;t_r 5(r) 8(z-z ) (231)

where now 'S displays the range-dependence of the acoustic properties of the
ocean. The range-dependence of the boundaries are displayed in the boundary
conditions themselves.

The range-independent solution was found to be given by,

1)

, N
_L
p(r,z) = " p(zo) z un(zo) un(z) Ho

n=1

(k r). (232)
n

However, in the range-dependent case, the eigenfunctions and eigenvalues vary
with range, therefore the solution may be written using the quasi- separation

of variables as,

N
plr,z) = Z fn(r) un(r.z) (233)

n=1

where un(r,z) are taken as the basis depth functions that satisfy the equation

76




NSWC TR 89-170

2
9y (r,z) + [kz(r.z) - kz(r)] u(r,z) =0 (234)
2 n n n

dz

and the orthonormality condition

z
J Fp(z) u (r,z) u(r,z) dz =6 . (235)
0 n m nm

Direct substitution of Equation (232) into Equation (231) gives,

N
Z {Vf[fn(r) un(r,z)] + fn(r)[az/az2 + k2(r,z)]un(r,z)} = E%F 8(r) 8(z-z)

n=1
(236)
where
2 _128 5]
and we may substitute
V[f (r)u(r,2)] =u v +2Vf-Tu «f vy (238)
r n n n r n rn rn n r n
to obtain
s 2 2 2 -1
Z{[(v +kfJu + 205 - Tu +f Vu}=—6(r) 8(z-z)
oLy r n nd n rn rn n ron 2nr (o]
(239)

which multiplied both sides by p(z) um(O.z) and integrated throughout depth

gives the inhomogeneous range equation

8 2 -1 )
[_ 8_ [r 5?] . kn(r)]fn(r) = 31 sr) plz,) u (0,2) (240)

N N
2 Z £1(ru_(r) - [ £ (riw_(r)
m=1 m=1

where
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U_(r) EoIsz(z) u(r,z) 9 u (r,2) az (241a)
and
%k 10 8
Nnm(r) EOJ pl(2) um(r,z) T 3 [r 5;] un(r,z) dz (241b)

are the elements of the coupling matrices that will take care of the exchange
of energy of the normal modes in the range-dependent environment. The prime
stands for the derivative with respect to the argument.

In the case where the acoustic properties and the boundaries of the ocean
wave guide slowly vary with range, the coupling integrals are negligible and

the adiabatic approximation is feasible. The adiabatic range equation is

[} 5 [r g?] R ki(r)]fn(r) = 2L s(r) plz) u (0,2)) (242)
where the range-dependent waveguide will be divided into M number of range-
independent segments. The procedure is to calculate a fixed number of trapped
and radiating modes for each range-independent segment. The resulting set of
eigenfunctions provides the function un(r,z). The unknown function, fn(r), is
obtained from the range equation and the range boundary conditions.

Range segment #1 is defined as the one where the source is located. The

homogeneous solution for the first range segment is

(2) 1

o« BV (*k r) (243)
(o] n

rry=ta BV % r) + '8 H
n n O n n

where the left-side superscripts is the range segment number, and the unknown
constants are to be determined with the range boundary conditions.

In the limit as 1knr — 0 the asymptotic forms of the Hankel functions

HY k) = - 2% r) - 2i/n log ('k 1) (244)
[¢] n 0 n e n

glves

't (r) - 2in e - 1B ) log Ckr). (245)
n n n e n

The particular solution is obtained by integrating the inhomogeneous range
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equation over a small cylinder of radius a containing the source, i.e.,

a a a

I Ye4(r) dr +J 1ir(r) ar +j “Wi(r) 'f (r) dr = (246)
n r n n n
0 ) )
2 s(r)
-p(zo) un(o,zo)/(Zn)oJ - dr.
Integrating by parts gives,
1 a 1 a ar o 12 1
£/ ()| + °f (r)/rl + J [ r “+ k°(r) ] f (r) dr = (247)
n (o} n o] 0 n n
a é(r)
- {
p(zo) Un\O,ZO)/(Zﬂ)OJ - dr

which in the limit as a — 0, only the slope at r = 0 and the integral over

the delta function remains, i.e.,

d'f (r)zdr — - plz ) u (0,2) / (2nr) (248)
n 0 n 0

which yields

1 -1 1
fn(r) - 5 p(zo) un(O,zo) loge( knr). (249)

Equating the two solutions provides the relationship

o - ’Bn = % p(z,) u (0,2) (250)

where the right-hand-side term is the constant in the range-independent
solution and this equation will be used as the relationship between both
unknowns in the first range segment.

The range segments labeled 2 to M-1 are characterized by the homogeneous

range equation, therefore the solutions are,

" (r) =" HY(Mr)+"8 H¥ (™ r) (251)
n n [o] n n 0 n

79




NSWC TR 89-170

where 2 = m < M.

The last range segment is assumed semi-infinite and with no source
present, therefore only the divergent solution of the homogeneous range
equation satisfies causality. The solution for the M*" range-independent

segment is

" (r) =" H'Y Mk ). (252)
n n O n
The unknowns are determined by the radial boundary conditions. These are:

1. Continuity of the normal particle velocity

N N
a m _d m+1
a7 Z fn(r) un(r,z)!r=r = 35 z fn(r) un(r,z)|r=r (253a)
n=1 m n=1 m
2. Continuity of the pressure
N N “
p sz (r) u(r,2)| _ =p z ™ (r) u (r,2)] (253b)
n n r=r n n r=r
n=1 m n=1 m

Since the eigenfunctions already satisfy the boundary conditions at every
range and depth, in a slowly varying range-dependent environment, the

conditions to satisfy for each mode are

mfn(r) cont inuous (254a)

and

cont inuous (254b)

mf;(r)

for 1 = m < M.

Application of these radial boundary conditions to the M-1 interface

gives

_ Ha (1) M
n O n M-1 n O n M-1 n O n M-1

(255a)

and
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L [H—la HY M ) . n—18 H(Z)("—lk - )] %" HEYM™ - )
n n n M-1

1 n M-1 n 1 n n 1 n M-1
(255b)
which is rewritten in matrix form as
My Mg =My My (256)
n, -1 n n,¥-1 n
where
Hé”("k r! H‘;Z)(Jk r)
J[Hn 1E (1) ) (2) | (257)
Pk B Ok r) ko H® k)
n 1 1 nt
and
Ja
’mn = |, " (258)
B
n
for i, j=2, 3, 4, ..., M and where "fsn = 0. To obtain "'A in terms of
n
HA , We Write
n
Mg = "y )t H " (259)
n n,M-1 n, H-1 n
The M-2 boundary has the relationship
-2y, n-zA - n-xm H-1, (260)
n, M-2 n n,M-2 n
and substituting the previous relationship for WAAH gives
-2, _ M-2 -1 M-1 K-1 -1 M M
An = ( [Hn,H-Z) (Hn,H—Z ( [Hn.H-i) [Hn,H-l An' (261)

H A ="H A (262)

which gives
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M-1
' ={ meH )Py "a (263)
n,m

m=1

where the term in the parenthesis is now defined as the 2x2 matrix X and the

coefficients in the first range segment are given by

a =X "« (264)

and

B =X «a. (265)

Substitution of these relationships into Equation (250) gives

i
i p(zo) un(O,zo) = (X11 - XZI) « (266)

which is solved for the unknown at the semi-infinite range segment and this
solution can be propagated to obtain the other unknowns.

The potentials for the range-independent solid layers are given by,

(1)
p(zo) un(zo) H (knr)] un(z) (267a)

NS

N
eolr,z) = Z [
n=1

and

(1)

N .
w(r,z) =) [7p(z) ulz) H' (k)] v (z) (267b)
n=1

where the term in the brackets is common to both solutions. With this
observation in mind, the range-dependent solutions in the solid layers will be

written as

N
olr,z) = Z £ (r) u(r,z) (268a)
n=1

and

N
wir,z) = Z £ (r) v (r,2) (268b)
n=1
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which must satisfy the four boundary conditions throughout range and depth.

The range function for these potentials is the same as the one given for
each range segment in the liquid layers. The unknown constants are evaluated
by the four radial boundary conditions. One of them is that the tangential

component of the particle velocity must be continuous, i.e.,
8 2 .
v (r ,z) = (—f ¢ + k w] = continuous (269)
z o 8. n X‘m

where substitution of ¢ and ¥ gives

f (r) [u’(r ,Z) + kv (r .2)] = continuous. (270)
n m n m n n m

However, since the eigenfunctions already satisfy the boundary conditions in
Equation (119), then all we have left to satisfy is the continuity of fn(rm).
The normal component of the particle velocity is another boundary

condition to be satisfied. This is given by

_ 8 3 _ .
vr(rm,z) = 3 [w(rm,z) * 3z w(rm.z)] = continuous (271)
and substitution of ¢ and y gives
’ ’ a ’ - .
fn(rm) [un + Vn]r + fn(rm) 3F [un + vn]rm = continuous (272)
m

where, in a slowly varying environment, the change in (un+v;) with respect to
range is much smaller than the change of the Hankel functions in fn(r) with
range. Therefore, the only functions to make continuous are fn(r) and f;(r).
The same conditions are found from the continuity of Prz and Pzz. With this
adiabatic approximation, the need to match four boundary conditions explicitly
has been avoided and only two equations must be satisfied. The equations to
match turn out to be the same as the ones in the liquid layers, therefore the
same function fn(r) can be used for both states of the matter. This property
may decrease the computation time by orders of magnitude.

After all the coefficients of the range-dependent waveguide are
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determined, the coherent and incoherent transmission loss in the solid layers
are obtained by Equations (176) through (184) where the components of the

particle velocity are

N
v = z f (r) [u'(r,z) + K v (r,z)] (273a)
Y 4 n=1 n n n n

and

N
v = z £/(r) [u (r,z) + v’ (r,2z)] (273b)
r n n n
n=1
where it has been assumed that the change of the eigenfunctions with range is

negligible compared to the change in the Hankel functions. The derivatives

with respect to range are given by

8

N
’ ’ 2
3 Y, =nzlfn(r) [un(r,z) + kn vn(r,z)] (274a)

and

N
é oo ;
= v =) £ [u(r,z) + v (r,2)] (274b)
n=1
where the homogeneous range equation gives

£7(r) = - £(r)/r - ki(r) £ (r). (275)

n

The derivatives with respect to depth are given by

gE v, =nilfn(r) [k: (un+v;) - K un] (276a)
and

d o 2 2

%= V. znzlf;(r) [ur + (k5=c%) v ] (276b)

The coherent transmission loss in the range-dependent water column is
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N
(z)
TLc(r.z) = -20 log[ 4n 2(2 3 Z fn(r) un(r,z) ] (277)
0 n=1
and the incoherent transmission loss is
p(z) Y2 &
TLi(r,z) ~-10 log[[ p(z )] Z £ (r) u (r z) ] (278)

where the range function fn(r) and the eigenfunctions are complex and the

transmission loss is real.
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CHAPTER 11

COMPARISON WITH EXPERIMENTAL MEASUREMENTS

The solutions from this range-dependent model can be compared with other
range-dependent models with the purpose of validating its results. However,
there is no other range-dependent model that can include the effects of shear
waves from the ocean bottom. Anyway, if there were an opportunity for the
inter-model comparison, their agreement cdoes not rule out the possibility tnat
both models are incorrect. A better way of validating this range-dependent
model is to compare its solutions to experimental measurements.

Ellis and Chapman}l’12 from the Defense Research Establishment Atlantic
(DREA), Dartmouth, Canada, have participated in a sea-test at a United Kingdom
continental shelf. One of the test areas has a slight range dependence of the
ocean floor. The approximate depth of the bottom is 100.0 meters and the
composition of the bottom is mostly chalk® (see Table 1) wit:.. a few meters of
sand at the top. They modeled this ocean environment as a range-independent
water layer over a semi-infinite chalk basement. Tnerefore, they neglected the
sand sediment and the ubiquitous basalt basement that should be located
somewhere under the chalk sediment. This approximation is not valid at
frequencies much lower than the optimum frequency of sound propagation,
because the penetration capability of its normal modes becomes higher and they
may reach the depth of the basalt basement. This simple two-layer model is
also not valld at frequencies higher than the optimum frequency because the

effects of the depth dependent water column becomes of paramount importance to

* Note that chalk does not satisfy the second inequality of Equations (185),
but it is not unusual for measured attenuation coefficients to be highly
erroneous since they are the most difficult ones to obtain. Even though these
properties of chalk may by questioned, they will be used for calculating the
transmission loss in the range~dependent environment described in References
10 and 11.

86




NSWC TR 89-170

the transmission loss calculation. They found the optimum frequency for the
environment to be in the vicinity of 300.0 Hz. At much higher frequencies,
the effects of the shear waves from the elastic bottom becomes negligible
compared to the effects of the depth-dependent water column. Therefore, we
will concentrate on the frequencies near and below the optimum frequency.

The source used were explousives that were preset to detonate at a depth
of 37.5 * 1 meters and a hydrophone was located at 71 meters deep. The water
depth is about 105 meters at the location of the hydrophone and it has a
constant slope with a water depth of 95 meters at a range of 55 kilometers
from the hydrophone. This corresponds to a bottom slope of 0.01 degree and it
can be considered a range-independent wave guide. A considerable amount of
transmission loss measurements have been provided by Chapman for the 1/3
octave band center frequencies of 64, 128, 256, 512, and 1024 Hz as a function
of range from 10 to 90 kilometers. It has been found that models with cr
without shear contribution provide nearly the same transmission loss for
frequencies higher than 256 Hz, hence the lower frequencies will be considered
here.

Figure 31 is the three-dimensional plot of the range-dependent coherent
transmission loss for a frequency of 128 Hz and a source depth of 38 meters.
The bottom is a semi-infinite basement of chalk with the properties in Table
1. The water column has a sound speed of 1508 m/s from the surface to a depth
of 28 meters, and a constant sound speed of 1494 m/s from a depth of 45 meters
to the bottom. The density is a constant 1 gm/cc from the surface to the
bottom. The range-dependent wave guide has been divided into 22 range-
independent range segments. The first few depth functions are T-R modes
similar to the ones for a sandy bottom (see Figures 12 and 13) and all but the
fundamental mode have negligible contribution at ranges greater than about 20
kilometers. The contour plot of this down-slope wave guide is shown in Figure
32 where the slight discontinuities in the derivative of the contours are
caused by the range segments.

Comparison of the measured and computed transmission loss, for the
hydrophone depth of 71 meters, is displayed in Figure 33. The frequency is
128 Hz and the range is extended to 100 kilometers to accommodate the provided
measurements. This transmission loss calculation agrees with the one made by

Ellis and Chapman with the simple two-layer modell!+ 12 However, their model is
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overestimating the loss at frequencies below 100 Hz.

Figure 34 presents the calculated and measured transmission loss for the
frequency of 64 Hz. Note that the excited normal modes are rapidly damped at
this lower frequency. If the shear speed of chalk is changed to the fluid-
like value in Table 1, the calculated coherent and incoherent transmission
loss becomes the one in Figure 35. Now all the normal modes are propagating
with much less attenuation, but this fluid-like model is underestimating the
loss. Note from these plots the tremendous importance of the shear waves in
the transmission loss calculation.

However, there must be a reason for the disagreement between the
theoretical and experimental values. Ellis and Chapman speculated that a deep
reflector is causing some of the acoustic energy to return to the water
column, but their simple model is incapable of including more layers.

Under the assumption that their suggested deep reflector may be the
omnipresent basalt basement, a semi-infinite layer has been included in our
model with the properties of basalt given in Table 1. The depth of the chalk-
basalt interface was taken as a variable in order to fit the calculated
transmission loss with the experimental data. This inverse scattering
technique provided the best fit for a chalk-basalt interface depth of about
240 meters and the resulting transmission loss is displayed in Figure 36. The
disagreement at ranges greater than 60 kilometers may be due to the extremely
high transmission loss that makes the signal fall below the noise level of the
measured data.

Since the exact location of the sea-test is confidentially kept by the
Canadians, there is no way we can verify the true depth of the basalt.
However, it has been noticed that this estimated depth is typical for similar
ocean environments. Also it has been verified that the semi~infinite layer of
basalt hardly changes the transmission loss calculations at 128 Hz (see Figure
33) because the fundamental depth function becomes negligible at 240 meters.

It is true that the wave guide just considered may be taken as range-
independent. Therefore, 2n up-slope range-dependent wave guide will be used to
test our model for a steeper bottom slope. A 25.C Hz source is located at a
depth of 112.0 meters in a 200.0 meters deep water column of constant sound
speed (1500.0 m/s) over a fluid-like bottom with the properties in Table 1.

Three trapped and four radiating modes are detected in this range-independent
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wave guide. The source has been placed at a node of the second normal mode to
avoid its excitation. The contour plot of the coherent transmission loss is
provided in Figure 37 and its three-dimensional display is in Figure 38 where
all seven modes have been included in their calculation. Since the Hankel
function computation has been performed using the asymptotic approximation,
the near field (r < A = c/f & 60 meters) transmission loss is not correct and
is not displayed in the given plots.

To convert this wave gulde into a range-dependent one, we will create an
up-slope that starts at five kilometers and ends at ten kilometers from the
source with a final bottom depth of 150.0 meters deep. Beyond ten kilometers
the wave guide remains range independent. The slope has been divided into 50
segments and the third trapped mode becomes a radiating mode in the shallow
portion of the wave guide. This slope has an angle of 0.57 degree and only the
first three normal modes have been used for this computation because the
higher order modes are of no effect to the transmission loss at the region of
interest. The results in this range-dependent wave guide are given in Figures
39 and 40. Note that some of the acoustic energy is propagating into the
bottom as a consequence of the slope which is converting the third trapped
mode into a radiating mode with a higher imaginary component of the
eigenvalue. Also note, by comparison of the range-dependent case (see Figure
39) with the range~independent case (see Figure 37), that the transmission
loss near the source is almost identical to the one for the range-independent
case. Hence, assuring the proper range-dependent transmission loss
computations. A similar propagation behavior was detected by Jensen17 and
Miller>>

The variation of the real part of the three eigenvalues with range
segment number is plotted in Figure 41 where the bottom curve with the highest
variation is the third trapped eigenvalue as it becomes a radiating one. The
imaginary component of the eigenvalue is displayed in Figure 42 where the
imaginary part of the third mode has become so high that its contribution to
the transmission loss can be neglected. The real part of the third normal mode
at the first range segment with the water depth of 170 meters is given in
Figure 43. As the water depth becomes shallower the third normal mode becomes
{he radiating mode in Figuie 44 for the water deptn or 1£0 meters. At 150

meters water depth the mode develops more oscillations into the bottom (see
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Figure 45) and its amplitude becomes order of magnitude smaller displaying its
negligible contribution. Hence, the precipitated propagation of the
interference pattern in Figure 39.

So far, we have performed transmission loss computations for range-
dependent wave guides with negligible shear contribution and the water column
has been a single layer of constant sound speed and density. An actual sound
speed from the Arctic Ocean is provided in Figure 2 with its salinity and
temperature profiles. The very low temperature of the environment causes the
propagated sound to be much slower than 1500 m/s and the high fluctuations
with depth are caused mainly by internal currents typical of the shallow
region of this ocean. This microstructure of the sound speed profile is highly
important to the propagation of high-frequency sound. For a 25 Hz source, a
valid approximation is to consider the 200 meters water column a single layer
with surface sound speed of 1435 m/s and a bottom sound speed of 1460 m/s. The

! and the bottom is a semi-infinite layer of

sound speed gradient is 0.125 s~
sand. To consider the case of downslope propagation, the bottom depth
increases from 200 meters at five kilometers from the source to 400 meters at
10 km range. The resulting transmission loss in this range-dependent
environment, with the bottom slope of -2.29, is provided in Figures 46 and 47.
Note, by comparison with Figures 16 and 17, that the gradient causes the sound
to interact less with the bottom, therefore causing it to propagate with less
loss. Also, as the bottom depth becomes larger, the sound gets trapped in the
surface channel caused by the positive gradient. This channeling behavior is
also modeled by ray bundles that bend upward and bounce back from the
pressure-release surface forming caustics at the regions where they
contructively interfere. Finally, note the destructive interference that
occurs in the bottom at about seven kilometers. As the sound bounces from the
ocean floor, some of its energy gets refracted into the bottom. However, at
the range-dependent region of the wave guide the angle of reflection is
affected by the slope, causing most of the reflected energy to scatter the
surface at a shallower angle and become trapped in the water column. The
combined effects of sound trapped in the channel and the reflections from the
slope contribute to the easy detection of surface ships and submarines from
open-ocean receivers.

The plots for the range~dependent wave guides do exhibit sound

90




NSWC TR 89-170

penetration into the bottom, but it seems to be more dampen thar the one
reported by Jensen17 and the one by Miller?3 A probable explanation is that
the mode coupling terms in Equations (240) must be included in the range-
dependent transmission loss calculations since the adiabatic approximation
breaks down for rapldly varying ocean wave guides.

Another important step for a better ocean model is to include the effects
of axial variations. Since the number of radiating modes have been drastically
reduced with the approach given in this investigation, the problem of computer
memory and storage has been decreased and further computations can be pursued.

This work represents a step closer to the final three-dimensional coupled
normal-mode model with shear wave from the ocean floor and the Arctic snow/ice

surface layers.
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CHAPTER 12

CONCLUSIONS AND RECOMMENDATIONS

A new sound propagation model and its computer code has been developed
based on the theory of normal modes. This normal mode model has been expanded
to take into account the effects of the elasticity of the ocean floor and the
depth dependence of the acoustic properties by dividing the wave guide into
horizontal layers with constant density, constant shear speed, and constant
attenuation coefficients. However, the water column has layers of linear wave
number squared to better simulate the sound speed profile. It has been found
that the compressional sound speed in the elastic layers can also have linear
wave number squared and the density in the water layers can be a variable and
still have a solvable set of wave equations. However, the limited knowledge of
the detéiled properties of the bottom and the limited applications suggest
that these flexibilities can be excluded from the computer code. Since the
absorptive properties of the bottom is so high and the attenuation of low-
frequency sound in the water is so low, the absorption in the water has been
neglected.

The newly developed normal mode model searches for the eigenvalues in the
complex wave number plane using the Levenberg-Marquardt algorithm that
searches for the minima of the magnitude of the complex determinant. It has
been found that the absuorptive properties of the semi-infinite bottom causes
the radiating wave number spectrum to be inherently discrete, hence the false
boundary introduced by Evans has been eliminated and the number of radiating
modes has been drastically reduced. The reduced number of modes for the
transmission loss calculations allows for the feasibility of calculations at
higher frequencies and deeper ocean wave guides.

The transmission loss in the elastic sediments is computed using the
magnitude of the acoustic intensity vector. This complex intensity vector is

the scalar product of the stress tensor and the particle velocity vector. The
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intensity vector can also be used to determine the direction of propagation of
the acoustic energy.

Range dependence of the acoustic properties of the ocean wave guide has
been taken into account by using a modified version of the adiabatic normal
mode theory to include the shear waves. This adiabatic normal mode theory has
been developed with the assumption of a slowly varying environment. However,
the threshold of maximum variation is not known because of the high degree of
complexity of this multilayered model and the large number of acoustic
properties that can be varied in range.

The eigenvalues, eigenfunctions, and range-independent transmission loss
results have been compared to the benchmark two-layer model, with a
semi~infinite elastic bottom, by Ellis and Chapman and the perturbation method
for fluid-like bottom by Miller yielding excellent agreement.

The range-dependent coherent transmission loss calculation has been
compared to transmission loss measurements by the Defence Research
Establishment Atlantic (DREA), Dartmouth, N.S., Canada, at the United Kingdom
continental shelf. Very good agreement was obtained at 128 Hz and above with a
the model containing a semi-infinite chalk bottom. However, this model
overestimates the loss at frequencies below 100 Hz. At these lower frequencies
the shear and compressional depth functions extended deeper into the bottom
where acoustic properties are unknown, hence the ubiquitous basalt basement
has been included at a depth of 240 meters from the ocean surface to provide
the agreement at 64 Hz without changing the results at 128 Hz and above.
Hence, this multilayered model can also be used for inverse scattering
purposes.

The up-slope wedge-like ocean has been modeled for a variable slope to
observe the changes in the transmission properties and to test the valldity of
the adiabatic approximation. Perfect agreement has been found between the
range-independent and the range-dependent transmission loss when all the
segments had the same acoustic properties and layer thickness. As the slope

increased a "tongue," similar to the one observed by Jensen and Miller, was
developed. However, increasing inaccuracy of the range-dependent transmission
loss with increasing bottom slope is expected due to the need of the coupling
terms in the inhomogeneous range equation which involve the range derivative

of the eigenfunctions.
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The next step to the ultimate transmission loss model is to include these
coupling contributions. Also, it is possible to include the azimuthal
variations of the ocean using the adiabatic approximation to obtain a three-
dimensional transmission loss model for slowly varying environments. Finally,
the azimuthal and range coupling contributions can be incorporated in the
three-dimensional model to simulate sea-mounts and more complex underwater
structures.

Other steps to improve the present computer code are to:

1. Include the effects of the elastic snow/ice layers at the surface of the
ocean model to simulate the sound propagation in the Arctic environment.
With such a model, it is possible to study the effects of shear waves on
ice-mounted receivers.

2. Include layers with linear variation of the density with depth. The
variation of density with depth in the water column has been measured and
found to be of minimum importance, but its variation in the elastic
sediments is often of considerable importance.

3. Include elastic layers with variable compressional sound speed. It has
been theoretically proven in this work that the elastic wave equation
representing a layer with variable compressional sound speed can be
separated into an equation for shear waves and one for the compressional
waves.

4. Include absorption effects from the water column. The absorption in the
water at low frequencies is negligible. However, its contribution at
higher frequencies becomes important and it must be included in the
transmission loss calculation.

S. Include the effects from surface and bottom roughness. Very simple
equations have been derived by Kuperman and Ingenito74 with the Kirchhoff
approximat:ion. The equations ignore the contributions from the
non-specularly reflected acoustic energy and they may be added to the
imaginary part of the complex wave numbers after the eigenfunctions are
computed.

6. Refine the searching algorithm to "guarantee" the uniform convergence to
all the complex eigenvalues. The present searching algorithm may not be
able to find all the complex eigenvalues for a water column with two or

more channels since these create degenerate eigenvalues with irregular
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spacings.

Include an option to obtain the transmission loss as a function of
frequency and to account for the frequency spectrum of the signal emitted
by the source (its signature). The current computer code calculates the
transmission loss of continuous wave (CW)} acoustic signals and extra

computations are required to obtain the transmission loss of pulses and

other wave forms.
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THE AIRY FUNCTIONS AND THEIR DERIVATIVES

FIGURE S.
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TABLE 1. GEO-ACOUSTIC PROPERTIES OF THE VARIQUS SEDIMENTS
Bottom Density |CompressionalCompressional| Shear Shear
Type speed attenuation speed |attenuation

(gm/cc) (m/s) {dB/kHz~m) {(m/s) (dB/kHz-m)
Fluid-like 1.15 1704.5 0.29 1.0 1.00
Clay-Silt 1.60 1515.0 0.50 100.0 1.00
Sand 2.00 1800.0 0.70 600.0 1.50
Basalt 2.60 5250.0 0.20 2500.0 0.50
Chalk 2.20 3200.0 0.10 1000.0 1.00
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TABLE 2.

COMPARISON OF THE CALCULATED REAL PART OF THE TRAPPED EIGENVALUES

NSWC TR 89-170

Mode# {Rigid Model |Soft Model |Perturbation{Exact Model]

1 0.1044248 |0.1035350 | 0.1041654 0.1040583
2 0.1020346 [0.0998963 | 0.1012651 0.1014331
3 0.0970778 |0.0935177 | 0.0963706 0.0960692
4 0.0891272 |0.0837758

5 0.0772641 }0.0692656

6 0.0591806 |0.0456463

7 0.0232692
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